Westdc Logo

当前浏览:植被类型


黑河流域1:100万植被类型图

该数据是对《1:100万中国植被图集》黑河流域部分的数字化,《1:1,000,000中国植被图集》是由著名植被生态学家侯学煜院士主编(侯学煜,2001),由中国科学院有关研究所、有关部委和各省区有关部门、高等院校等53个单位250多位专家共同编制,是我国植被生态学工作者40多年来继《中国植被》等专著出版后又一项总结性成果,是国家自然资源和自然条件的基本图件。它是根据半个世纪以来全国各地开展植被调查所积累的丰富的第一手资料,并利用航空遥感和卫星影像等现代技术所获得的材料以及有关地质学、土壤学和气候学最新的研究成果编制而成。它详细反映了我国11个植被类型组、54个植被型的796个群系和亚群系植被单位的分布状况、水平地带性和垂直地带性分布规律,同时反映了我国2000多个植物优势种、主要农作物和经济作物的实际分布状况及优势种与土壤和地面地质的密切关系。该图集属于现实植被图图种,反映我国植被近期的质...

黑河流域1∶10万植被图(2.0版)

1:10万黑河流域植被图,区域范围以黄委会黑河边界为准,面积约为14.29×104km2,数据格式为GIS矢量格式,本版本为2.0版。该数据以地面观察数据为主、综合各类遥感数据、1:100万植被图、气候、地形、地貌、土壤数据制图,并进行交叉验证编制而成。采用《中华人民共和国植被图 (1:1,000,000), 2007》的分类标准、图例单位和系统,包括植被型组、植被型、群系、亚群系四个单位。制图方法包括以下几个方面:⑴ 目视解译标志建立。根据地面观察数据,确定植物群落和特殊地物在遥感影像中的具体位置,判读其在遥感影像上所显示的形状、色调及纹理特征,建立目视解译标志。⑵ 特殊地物与植物群落提取和制图。使用30m地形图、Landsat高精度遥感影像、Google earth、冰川数据,以及前述各类数据,提取全流域易于识别的地物。⑶ 上游植被制图。中上游山区海拔垂直变化剧烈,植被变化明显,采用地...

黑河祁连山天老池流域2013年草地土壤蒸散发数据集

本数据为祁连山天老池小流域亚高山草原草地的土壤蒸散发数据。 用自制的Lysimeter来观测土壤的蒸散发,为流域蒸散发模型的发展提供基础数据。实验共布设了六个重复试验,观测亚高山草原草地在整个生长季的土壤蒸散发变化。每天8:00和20:00利用精度为1g的电子称对内桶进行称量,如遇到降雨情况,观察渗漏桶内是否有渗漏水,如果有渗漏水应同时测量渗漏桶内渗漏水量。 观测仪器:1)标准20cm直径雨量筒量雨器。2)自制Lysimeter(直径30.5cm,桶高28.5)。3)电子天平(精度1g),用于观测自制Lysimeter的重量变化。...

黑河生态水文遥感试验:黑河流域1km/5天光合有效辐射吸收比例(FPAR)数据集

黑河流域光合有效辐射吸收比例数据集提供了2013-2014年的光合有效辐射吸收比例数据产品。光合有效辐射吸收比例(FPAR)是光合有效辐射穿过冠层到达地表又被反射从冠层穿出过程中被冠层吸收的光合有效辐射占全部光合有效辐射的比例,它是由植被冠层生理生态特性以及结构特性所决定。本数据集算法在基于能量守恒的FPAR反演方法的基础上发展而来,为体现直散射辐射在冠层中路径和被吸收概率的不同,发展了一种区分直射与散射的FPAR反演模型。算法能够反演植被冠层直射部分FPAR、散射FPAR及总FPAR,反演得到的瞬时FPAR与观测FPAR间RMSE为0.0289,R2为0.8419。...

黑河生态水文遥感试验:黑河流域1km/5天合成叶面积指数(LAI)数据集

黑河流域1km/5天合成叶面积指数(LAI)数据集提供了2010-2014年的5天LAI合成结果,该数据利用Terra/MODIS、Aqua/MODIS、以及国产卫星FY3A/MERSI和FY3B/MERSI传感器数据构建空间分辨率1km、时间分辨率5天的多源遥感数据集。多源遥感数据集可在有限时间内提供比单一传感器更多的角度和更多次的观测,但是,由于传感器的在轨运行时间及性能差异,多源数据集的观测质量参差不齐。因此,为更有效的利用多源数据集,算法首先对多源数据集进行了质量分级,根据观测合理性分为一级数据、二级数据、三级数据。三级数据为受薄云污染的观测,不用于计算。质量评估及分级的目的是为LAI反演时最优数据集的选择及反演算法流程设计提供依据。叶面积指数产品反演算法设计为区分山地平地、区分植被类型使用不同模型的神经网络法反演。基于全球DEM图和地表分类图,针对草地和农作物等连续植被采用PRO...

黑河生态水文遥感试验:黑河流域1km/5天合成叶面积指数(LAI)数据集-2015

黑河流域2015年1km/5天合成叶面积指数(LAI)数据集提供了2015年的5天LAI合成结果,该数据利用Terra/MODIS、Aqua/MODIS、以及国产卫星FY3A/MERSI和FY3B/MERSI传感器数据构建空间分辨率1km、时间分辨率5天的多源遥感数据集。多源遥感数据集可在有限时间内提供比单一传感器更多的角度和更多次的观测,但是,由于传感器的在轨运行时间及性能差异,多源数据集的观测质量参差不齐。因此,为更有效的利用多源数据集,算法首先对多源数据集进行了质量分级,根据观测合理性分为一级数据、二级数据、三级数据。三级数据为受薄云污染的观测,不用于计算。质量评估及分级的目的是为LAI反演时最优数据集的选择及反演算法流程设计提供依据。叶面积指数产品反演算法设计为区分山地平地、区分植被类型使用不同模型的神经网络法反演。基于全球DEM图和地表分类图,针对草地和农作物等连续植被采用PRO...

黑河生态水文遥感试验:黑河流域1km/5天合成植被指数(NDVI/EVI)数据集

黑河流域1km/5day植被指数(NDVI/EVI)数据集提供了2011-2014年的5天分辨率NDVI/EVI合成产品,该数据利用我国国产卫星FY-3数据兼具较高时间分辨率(1天)和空间分辨率(1km)的特点构造多角度观测数据集,在对多源数据集以及现有合成植被指数产品及算法进行分析的基础上,提出了基于多源数据集生产1km分辨率5天周期的全球合成植被指数产品算法体系。植被指数合成算法基本采用MODIS的植被指数合成算法,即基于半经验的Walthall模型的BRDF角度归一化方法、CV-MVC法和MVC法的算法体系。利用该算法体系,分别对一级数据、二级数据计算合成植被指数,并进行质量标识。多源数据集可在有限时间内提供比单一传感器更多的角度和更多次的观测,但是,由于传感器的在轨运行时间及性能差异,多源数据集的观测质量参差不齐。因此,为更有效的利用多源数据集,算法体系首先对多源数据集进行了质量分...

黑河生态水文遥感试验:黑河流域1km/5天合成植被指数(NDVI/EVI)数据集-2015

黑河流域1km/5day植被指数(NDVI/EVI)数据集提供了2015年的5天分辨率NDVI/EVI合成产品,该数据利用我国国产卫星FY-3数据兼具较高时间分辨率(1天)和空间分辨率(1km)的特点构造多角度观测数据集,在对多源数据集以及现有合成植被指数产品及算法进行分析的基础上,提出了基于多源数据集生产1km分辨率5天周期的全球合成植被指数产品算法体系。植被指数合成算法基本采用MODIS的植被指数合成算法,即基于半经验的Walthall模型的BRDF角度归一化方法、CV-MVC法和MVC法的算法体系。利用该算法体系,分别对一级数据、二级数据计算合成植被指数,并进行质量标识。多源数据集可在有限时间内提供比单一传感器更多的角度和更多次的观测,但是,由于传感器的在轨运行时间及性能差异,多源数据集的观测质量参差不齐。因此,为更有效的利用多源数据集,算法体系首先对多源数据集进行了质量分级,根据观...

黑河生态水文遥感试验:黑河流域30m/月合成光合有效辐射吸收比例(FAPAR)数据集

黑河流域30m/月合成光合有效辐射吸收比例(FAPAR)数据集提供了2011-2014年的月度LAI合成产品,该数据利用我国国产卫星HJ/CCD数据兼具较高时间分辨率(组网后2天)和空间分辨率(30m)的特点构造多角度观测数据集,考虑不同植被类型,基于土地覆盖分类图,结合30m/月合成叶面积指数(LAI)产品,采用基于能量守恒的FAPAR-P模型,进行月合成FAPAR产品生产。算法从能量守恒原理出发,考虑植被间及土壤与植被间的多次反弹,也考虑了天空散射光等多种因素的影响,通过分析光子与冠层作用的过程,从光子在植被冠层内的运动和发生多次散射时的再碰撞概率相等为出发点,建立了均匀连续植被FAPAR模型。此外,分析多种影响因素对FAPAR模型的影响,其中土壤和叶片反射率、聚集指数、G函数在针对不同情况采用不同取值。算法具有很高的动态性,对于不同的土壤背景、植被类型、辐射条件、光照与观测几何、天气...

黑河生态水文遥感试验:黑河流域30m/月合成叶面积指数(LAI)数据集

黑河流域30m/月合成叶面积指数(LAI)数据集提供了2011-2014年的月度LAI合成产品,该数据利用我国国产卫星HJ/CCD数据兼具较高时间分辨率(组网后2天)和空间分辨率(30m)的特点构造多角度观测数据集,考虑地表分类和地形起伏影响,算法针对不同植被类型特点选择适宜的一体化模型参数化方案,基于查找表方法反演LAI。每月获取的遥感数据能够提供比单天传感器数据更多的角度和更多次的观测,但由于传感器的在轨运行时间及性能差异,多时相、多角度观测数据的质量参差不齐。因此,为有效利用多时相、多角度观测数据,首先设计了数据质量检查方案。利用黑河上游大野口地区与中游盈科、临泽等地区的9个森林样方,20个农田样方和14个稀树草原样方的LAI地面观测数据验证7月份LAI,反演结果与测量结果吻合得很好,平均误差小于1;此外联合多时相、多角度观测数据的LAI反演结果与地面实测数据具有较好的一致性(R2=...