Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of A’rou Superstation, 2019)


This dataset contains the flux measurements from the A’rou superstation eddy covariance system (EC) in the upperstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2019. The site (100.372° E, 38.856° N) was located in the Daban Village, near Qilian County in Qinghai Province. The elevation is 3033 m. The EC was installed at a height of 3.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m.

The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Data during insufficient power supply, data were missing occasionally.

The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.

For more information, please refer to Liu et al. (2018) and Che et al. (2019) (for sites information), Liu et al. (2011) for data processing) in the Citation section.


Data file naming and use method

Year+** observatory network+ site no + EC.


Required Data Citation View Data Cite Help About Data Citation
Cite as:

LIU Shaomin, CHE Tao, XU Ziwei, ZHANG Yang, TAN Junlei, REN Zhiguo. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of A’rou Superstation, 2019). National Tibetan Plateau Data Center, 2020. doi: 10.11888/Meteoro.tpdc.270691. (Download the reference: RIS | Bibtex )

Related Literatures:

1. Liu, S.M., Xu, Z.W., Wang, W.Z., Bai, J., Jia, Z., Zhu, M., & Wang, J.M. (2011). A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrology and Earth System Sciences, 15(4), 1291-1306. doi:10.5194/hess-15-1291-2011.( View Details | Bibtex)

2. Liu, S.M., Li, X., Xu, Z.W., Che, T., Xiao, Q., Ma, M.G., Liu, Q.H., Jin, R., Guo, J.W., Wang, L.X., Wang, W.Z., Qi, Y., Li, H.Y., Xu, T.R., Ran, Y.H., Hu, X.L., Shi, S.J., Zhu, Z.L., Tan, J.L., Zhang, Y., & Ren, Z.G. (2018). The Heihe Integrated Observatory Network: A Basin-Scale Land Surface Processes Observatory in China. Vadose Zone Journal, 17(1), 180072. doi:10.2136/vzj2018.04.0072.( View Details | Bibtex)

3. Che, T., Li, X., Liu, S., Li, H., Xu, Z., Tan, J., Zhang, Y., Ren, Z., Xiao, L., Deng, J., Jin, R., Ma, M., Wang, J., & Yang, X. (2019). Integrated hydrometeorological, snow and frozen-ground observations in the alpine region of the Heihe River Basin, China. Earth System Science Data, 11, 1483-1499( View Details | Download | Bibtex)

Using this data, the data citation is required to be referenced and the related literatures are suggested to be cited.


References literature

1.Liu, S.M., Xu, Z.W,, Song, L.S., Zhao, Q.Y., Ge, Y., Xu, T.R., Ma, Y.F., Zhu, Z.L., Jia, Z.Z., & Zhang, F. (2016). Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agricultural and Forest Meteorology, 230-231, 97-113. doi:10.1016/j.agrformet.2016.04.008. (View Details )

2.Song, L.S., Liu, S.M., Kustas W P, Zhou, J., Xu, Z.W., Xia, T., Li, M.S. (2016). Application of remote sensing-based two-source energy balance model for mapping field surface fluxes with composite and component surface temperatures. Agricultural and Forest Meteorology, doi:10.1016/j.agrformet.2016.01.005. (View Details )

3.Song, L.S., Kustas WP, Liu, S.M., Colaizzi PD, Nieto H, Xu, Z.W., Ma, Y.F., Li, M.S., Xu, T.R., Agam N, Tolk JA, Evett SR. (2016). Applications of a thermal-based two-source energy balance model using Priestley-Taylor approach for surface temperature partitioning under advective conditions. Journal of Hydrology, doi:10.1016/j.jhydrol.2016.06.034. (View Details )

4.Zhang, Q., Sun, R., Jiang, G.Q., Xu, Z.W., Liu, S.M. (2016). Carbon and energy flux from a Phragmites australis wetland in Zhangye oasis-desert area, China. Agricultural and Forest Meteorology, doi: 10.1016/j.agrformet.2016.02.019. (View Details )

5.Xu, T.R., Bateni, S.M., & Liang, S.L. (2015). Estimating turbulent heat fluxes with a weak-constraint data assimilation scheme: A case study (HiWATER-MUSOEXE). IEEE Geoscience and Remote Sensing Letters, 12(1), 68-72. (View Details )

6.Wang, J.M., Zhuang, J.X., Wang, W.Z., Liu, S.M., Xu, Z.W. (2015). Assessment of uncertainties in eddy covariance flux measurement based on intensive flux matrix of HiWATER-MUSOEXE. IEEE Geoscience and Remote Sensing Letters, 12(2), 259-263. doi:10.1109/LGRS.2014.2334703. (View Details )

7.Song, L.S., Liu, S.M., Zhang, X., Zhou, J., Li, M.S. (2015). Estimating and Validating Soil Evaporation and Crop Transpiration During the HiWATER-MUSOEXE. IEEE Geoscience and Remote Sensing Letters, 12(2), 334-338. doi:10.1109/LGRS.2014.2339360. (View Details )

8.Qiao C, Sun R, Xu ZW, Zhang L, Liu LY, Hao LY, Jiang GQ. A study of shelterbelt transpiration and cropland evapotranspiration in an irrigated area in the middle reaches of the Heihe River in northwestern China. IEEE Geoscience and Remote Sensing Letters, 2015, 12(2), 369-373. doi:10.1109/LGRS.2014.2342219 (View Details )

9.Zhu, Z.L., Tan, L., Gao, S.G., & Jiao, Q.S. (2015). Oberservation on soil moisture of irrigated cropland by cosmic-ray probe. IEEE Geoscience and Remote Sensing Letters, 12(3), 472-476. doi:10.1109/LGRS.2014.2346784. (View Details )

10.Ge, Y., Liang, Y.Z., Wang, J.H., Zhao, Q.Y., Liu, S.M. (2015). Upscaling sensible heat fluxes with area-to-area regression kriging. IEEE Geoscience and Remote Sensing Letters, 12(3), 656-660. doi:10.1109/LGRS.2014.2355871. (View Details )

11.Ma, Y.F., Liu, S.M., Zhang, F., Zhou, J., Jia, Z.Z. (2015). Estimations of regional surface energy fluxes over heterogeneous oasis-desert surfaces in the middle reaches of the Heihe River during HiWATER-MUSOEXE. IEEE Geoscience and Remote Sensing Letters, 12(3), 671-675. doi:10.1109/LGRS.2014.2356652. (View Details )

12.Bai, J., Jia, L., Liu, S., Xu, Z., Hu, G., Zhu, M., &Song, L. (2015). Characterizing the Footprint of Eddy Covariance System and Large Aperture Scintillometer Measurements to Validate Satellite-Based Surface Fluxes. IEEE Geoscience and Remote Sensing Letters, 12(5), 943-947. (View Details | Download )

13.Xu, T.R., Liu, S.M., Xu, Z.W., Liang, S.L., Xu, L. (2015). A dual-pass data assimilation scheme for estimating surface fluxes with FY3A-VIRR land surface temperature. Sci. China Earth Sci., 58(2), 211-230, doi: 10.1007/s11430-014-4964-7. (View Details | Download )

14.Xu, T., Liu, S., Xu, L., Chen ,Y., Jia, Z., Xu, Z., &Nielson, J. (2015). Temporal Upscaling and Reconstruction of Thermal Remotely Sensed Instantaneous Evapotranspiration. Remote Sensing, 7(3), 3400-3425. (View Details | Download )

15.Zhang, L., Sun, R., Xu, Z.W., Qiao, C., Jiang, G.Q. (2015). Diurnal and Seasonal Variations in Carbon Dioxide Exchange in Ecosystems in the Zhangye Oasis Area, Northwest China. PLoS ONE, 10(3). doi:10.1371/journal.pone.0120660. (View Details )

16.Song, L.S., Liu, S.M., William Kustas P, Zhou, J., Ma, Y.F. (2015). Using the Surface Temperature-Albedo Space to Separate Regional Soil and Vegetation Temperatures from ASTER Data. Remote Sensing, 7(5), 5828-5848. doi:10.3390/rs70505828. (View Details )

17.Hu, M.G., Wang, J.H., Ge, Y., Liu, M.X., Liu, S.M., Xu, Z.W., &Xu, T.R. (2015). Scaling Flux Tower Observations of Sensible Heat Flux Using Weighted Area-to-Area Regression Kriging. Atmosphere, 6(8), 1032-1044. (View Details | Download )

18.Zhou, J., Li, M.S., Liu, S.M., Jia, Z.Z., Ma, Y.F. (2015). Validation and performance evaluations of methods for estimating land surface temperatures from ASTER data in the middle reach of the Heihe River Basin, Northwest China. Remote Sensing, 7, 7126-7156. (View Details )

19.Li, Y., Sun, R., Liu, S.M. (2014).Vegetation Physiological Parameters Setting in the Simple Biosphere Model 2 (SiB2) for alpine meadows in upper reaches of Heihe River. SCIENCE CHINA, doi:10.1007/s11430-014-4909-1. (View Details )

20.Xu, Z.W., Liu, S.M., Li, X., Shi, S.J., Wang, J.M., Zhu, Z.L., Xu, T.R., Wang, W.Z., & Ma, M.G. (2013). Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE. Journal of Geophysical Research, 118, 13140-13157. (View Details | Download )

21.Liu, S.M., Xu, Z.W., Zhu, Z.L., Jia, Z.Z., & Zhu, M.J. (2013). Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. Journal of Hydrology, 487, 24-38. (View Details | Download )

22.Liu, R., Sogachev, A., Yang, X.F., Liu, S.M., Xu, T.R., Zhang, J.J. (2020). Investigating microclimate effects in an oasis-desert interaction zone. Agricultural and Forest Meteorology, 290, 107992 (View Details )

23.Xu, Z.W., Liu, S.M., Zhu, Z.L., Zhou, J., Shi, W.J., Xu, T.R., Yang, X.F., Zhang, Y., He,X.L. (2020). Exploring evapotranspiration changes in a typical endorheic basin through the integrated observatory network. Agricultural and Forest Meteorology. 290, 108010. (View Details )

24.Ruehr, S., Lee, X.H., Smith, R., Li, X., Xu, Z.W., Liu, S.M., Yang, X.F., Zhou,Y.Z. (2020). A mechanistic investigation of the oasis effect in the Zhangye cropland in semiarid western China. Journal of Arid Environments. 176, 104120. (View Details )

25.Song, L.S., Bian, Z.J., William P, K., Liu, S.M., Xiao, Q., Hector, N, Xu, Z.W., Yang, Y., Xu, T.R., Han, X.J. (2020). Estimation of surface heat fluxes using multi-angular observations of radiative surface temperature. Remote sensing of Environment, 239, 111674. (View Details )

26.Xu, Z.W., Ma, Y.F., Liu, S.M., Shi, S.J., Wang, J.M. (2017). Assessment of the energy balance closure under advective conditions and its impact using remote sensing data. Journal of Applied Meteorology and Climatology, 56, 127-140, doi: 10.1175/JAMC-D-16-0096.1. (View Details )

27.Xu, T.R., He, X.L., Bateni, S.M., Auligne, T., Liu, S.M., Xu, Z.W., Zhou, J., Mao, K.B. (2019). Mapping Regional Turbulent Heat Fluxes via Variational Assimilation of Land Surface Temperature Data from Polar Orbiting Satellites. Remote Sensing of Environment, 221, 444-461, doi.org/10.1016/j.rse.2018.11.023 (View Details )

28.Song, L.S., Liu, S.M., William P, K., Hector, N., Sun, L., Xu, Z.W., Todd H, S., Yang, Y., Ma, M.G., Xu, T.R., Tang, X.G., Li, Q.P. (2018). Monitoring and validating spatially and temporally continuous daily evaporation and transpiration at river basin scale. Remote Sensing of Environment, 219, 72–88. doi: 10.1016/j.rse.2018.10.002. (View Details )

29.Li, X., Liu, S.M., Li, H.X., Ma, Y.F., Wang, J.H., Zhang, Y., Xu, Z.W., Xu, T.R., Song, L.S., Yang, X.F., Lu, Z., Wang, Z.Y., Guo, Z.X. (2018). Intercomparison of six upscaling evapotranspiration methods: From site to the satellite pixel. Journal of Geophysical Research: Atmospheres, 123(13), 6777-6803. https://doi.org/10.1029/2018JD028422. (View Details )

30.Ma, Y.F., Liu, S.M., Song, L.S., Xu, Z.W., Liu, Y.L., Xu, T.R., Zhu, Z.L. (2018). Estimation of daily evapotranspiration and irrigation water efficiency at a Landsat-like scale for an arid irrigation area using multi-source remote sensing data. Remote Sensing of Environment, 216, 715-734. doi:10.1016/j.rse.2018.07.019. (View Details )

31.Liu, R., Liu, S.M., Yang, X.F., Lu, H, Pan, X.D., Xu, Z.W., Ma, Y.F., Xu,T.R. (2018). Wind dynamics over a highly heterogeneous oasis area: An experimental and numerical study. Journal of Geophysical Research: Atmospheres. 123, 8418-8440. (View Details )

32.Xu, T.R., Guo, Z.X., Liu, S.M., He, X.L., Meng, Y.F.Y., Xu, Z.W., Xia, Y.L., Xiao, J.F., Zhang, Y., Ma, Y.F, Song, L.S. (2018). Evaluating Different Machine Learning Methods for Upscaling Evapotranspiration from Flux Towers to the Regional Scale. Journal of Geophysical Research: Atmospheres, 123(16), 8674-8690. doi: 10.1029/2018JD028447. (View Details )

33.Gao, S.G., Zhu, Z.L., Liu, S.M., Jin, R., Yang, G.C., Tan, L. (2014). Estimating spatial distribution of soil moisture based on Bayesian maximum entropy method with auxiliary data from remote sensing. International Journal of Applied Earth Observation and Geoinformation, 32, 54-66. doi:10.1016/j.jag.2014.03.003. (View Details )


Support Program

Pan-Third Pole Environment Study for a Green Silk Road-A CAS Strategic Priority A Program (No:XDA20000000)

User Limit

To respect the intellectual property rights, protect the rights of data authors,expand servglacials of the data center, and evaluate the application potential of data, data users should clearly indicate the source of the data and the author of the data in the research results generated by using the data (including published papers, articles, data products, and unpublished research reports, data products and other results). For re-posting (second or multiple releases) data, the author must also indicate the source of the original data.

Example of acknowledgement statement is included below: The data set is provided by National Tibetan Plateau Data Center (http://data.tpdc.ac.cn).


License: This work is licensed under an Attribution 4.0 International (CC BY 4.0)


Related Resources
Comment

Sign In to add comments

Download Follow
Keywords
Geographic coverage
East: 100.46 West: 100.46
South: 38.05 North: 38.05
Detail
  • Temporal resolution: Hourly
  • Spatial resolution: -
  • File size: 3 MB
  • Browse count: 377 Times
  • Apply count: 31 Times
  • Share mode: offline
  • Temporal coverage: 2019-12-31 To 2020-02-04
  • Updated time: 2020-06-02
Contact Information
: LIU Shaomin   CHE Tao   XU Ziwei   ZHANG Yang   TAN Junlei   REN Zhiguo  

Distributor: National Tibetan Plateau Data Center

Email: data@itpcas.ac.cn

Export metadata