WATER: Dataset of eddy covariance observations at the Yingke oasis station

The dataset of eddy covariance observations was obtained at the Yingke Oasis station from 27 Dec. 2007 to 31 Dec. 2009. The observation site is located in an irrigation farmland in Yingke (E100°24′37.2″/N38°51′25.7″, 1519.1m), Zhangye city, Gansu province. The experimental area, situated in the middle stream Heihe river basin and with windbreaks space of 500m from east to west and 300m from south to north, is an ideal choice for its flat and open terrain.

The original observation items included the latitudinal wind speed Ux (m/s), the latitudinal wind speed Uy (m/s), the longitudinal wind speed Uz (m/s), the ultrasonic temperature Ts (°C), co2 consistency (mg/m^3), h2o consistency (g/m^3), air pressure (KPa) and the abnormal ultrasonic signal (diag_csat). The instrument mount was 2.81m, the ultrasound direction was at an azimuth angle of 0°, the distance between Li7500 and CSAT3 was 30cm and the sampling frequency was 10HZ/s.

The dataset was distributed at three levels: Level0 were the raw data acquired by instruments; Level1, including the sensible heat flux (Hs), the latent heat flux (LE_wpl), and co2 flux (Fc_wpl), were real-time eddy covariance output data and stored in .csv month by month; Level2 were processed data in a 30-minute cycle after outliers elimination, coordinates rotation, frequency response correction, WPL correction and initial quality control. The data files were named as follows: station name +data level+data acquisition date. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide and Eddy Covariance Observation Manual.

Required Data Citation View Data Cite Help About Data Citation
Cite as:

LIU Qinhuo, TAN Junlei, Liu Qiang, MA Mingguo, Wang Weizhen, Huang Guanghui, ZHANG Zhihui. WATER: Dataset of eddy covariance observations at the Yingke oasis station. National Tibetan Plateau Data Center, 2015. doi: 10.3972/water973.0278.db. (Download the reference: RIS | Bibtex )

Related Literatures:

1. Liu, S.M., Li, X., Xu, Z.W., Che, T., Xiao, Q., Ma, M.G., Liu, Q.H., Jin, R., Guo, J.W., Wang, L.X., Wang, W.Z., Qi, Y., Li, H.Y., Xu, T.R., Ran, Y.H., Hu, X.L., Shi, S.J., Zhu, Z.L., Tan, J.L., Zhang, Y., & Ren, Z.G. (2018). The Heihe Integrated Observatory Network: A Basin-Scale Land Surface Processes Observatory in China. Vadose Zone Journal, 17(1), 180072. doi:10.2136/vzj2018.04.0072.( View Details | Download | Bibtex)

2. Li X, Li XW, Li ZY, Ma MG, Wang J, Xiao Q, Liu Q, Che T, Chen EX, Yan GJ, Hu ZY, Zhang LX, Chu RZ, Su PX, Liu QH, Liu SM, Wang JD, Niu Z, Chen Y, Jin R, Wang WZ, Ran YH, Xin XZ, Ren HZ. Watershed Allied Telemetry Experimental Research. Journal of Geophysical Research, 2009, 114(D22103), doi:10.1029/2008JD011590.( View Details | Bibtex)

Using this data, the data citation is required to be referenced and the related literatures are suggested to be cited.

References literature

1.Chen Y, Xia JZ, Liang SL, Fang JM, Fisher JB, Li X, Liu SG, Ma ZG, others. Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China. Remote Sensing of Environment, 2013, 0.1016/j.rse.2013. 08.045. (View Details | Download )

2.Wu Lizong, Qu Yonghua, Wang Liangxu, Sun Qingsong, Hu Xiaoli, Li Xin, Wang Jindi, Li Hongxing, et al. Data Management and Its Sharing Application of Watershed Allied Telemetry Experimental Research. Remote Sensing Technology and Application, 2010, 25(6): 772-781. (View Details )

3.Xin X, Liu Q. The Two-layer Surface Energy Balance Parameterization Scheme (TSEBPS) for estimation of land surface heat fluxes. Hydrology and Earth System Sciences, 2010, 14(3): 491-504. (View Details | Download )

4.Liu LY, Cheng ZH. Detection of Vegetation Light-Use Efficiency Based on Solar-Induced Chlorophyll Fluorescence Separated From Canopy Radiance Spectrum. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3(3): 306-312. (View Details | Download )

5.Wu CY, Niu Z, Gao SA. Gross primary production estimation from MODIS data with vegetation index and photosynthetically active radiation in maize. Journal of Geophysical Research, 2010, 115(D12127) 10.1029/2009JD013023. (View Details | Download )

6.Li Xin, Li Xiaowen, LiZengyuan.et al.Progresses on the Watershed Allied Telemetry Experimental Research(WATER)[J].Remote Sensing Technology and Application,2012,27(5):637-649. (View Details )

7.Ma Mingguo, Liu Qiang, Pei Guangjian, Chen Erxue, Xiao Qing, Su Peixi, Hu Zeyong, Li Xin, Niu Wei, Wang Weizhen, Qian Jinbo, Song Yi, Ding Songshuang, Xin Xiaozhou, Ren Huazhong, Huang Chunlin, Jin Rui, Che Tao, Chu Rongzhong. Simultaneous Remote Sensing and (Ground-based Experiment in the Heihe River Basin:Experiment of Forest Hydrology and Arid Region Hydrology in the Middle Reaches. Advances in Earth Science, 2009, 24(7): 681-695. (View Details )

8.Wu, Chaoyang, Niu, Zheng, Gao, Shuai. The potential of the satellite derived green chlorophyll index for estimating midday light use efficiency in maize, coniferous forest and grassland. Ecological Indicators, 2012, 14(1):66-73. doi:10.1016/j.ecolind.2011.08.018 (View Details )

9.HUANG Guanghui, MA Mingguo, TAN Junlei, ZHANG Zhihui. Data Quality Control and Products of Automatic Weather Stations for Watershed Allied Telemetry Experimental Research. Remote Sensing Technology and Application, 2010, 25(6): 814-820. (View Details )

10.Colin J, Faivre R. Aerodynamic roughness length estimation from very high-resolution imaging LIDAR observations over the Heihe basin in China. Hydrology and Earth System Sciences, 2010, 14(12): 2661-2669. doi:10.5194/hess-14-2661-2010. (View Details | Download )

11.Ma, Weiqiang, Ma, Yaoming, Ishikawa, Hirohiko, Su, Zhongbo. Estimation of Land Surface Energy Fluxes from Remote Sensing Using One-Layer Modeling Approaches. Remote Sensing of Energy Fluxes and Soil Moisture Content, 2013, :189-206 (View Details )

12.Yang Y, Su H, Zhang R, Tian J, Yang S. Estimation of regional evapotranspiration based on remote sensing: case study in the Heihe River Basin. Journal of Applied Remote Sensing, 2012, 6(1)061701-061701. (View Details )

13.Li Xin, Wang Jian, Xiao Qing, et al.Simultaneous Remote Sensing and Ground-based Experiment in the Heihe River Basin: Scientific Objectives and Experiment Design[J]. Advances in Earth Science, 2008, 23(9):897-914. (View Details )

14.LiXin,Lin Qiang. Liu Qinhuo,et al. The Progresses on the Watershed Allied Telemetry Experimental Research (WATER):Remote Sensing of Key Hydrological and Ecological Parameters[J].Remote Sensing Technology and Application,2012.27(5)650-662. (View Details )

15.Yu, S., X. Xin, and Q. Liu. 2013. Estimation of clear-sky longwave downward radiation from HJ-1B thermal data. Science China Earth Sciences 56:829-842. (View Details )

16.Li, Y., Zhou, J., Kinzelbach, W., Cheng, G., Li, X., Zhao, W., 2013. Coupling a SVAT heat and water flow model, a stomatal-photosynthesis model and a crop growth model to simulate energy, water and carbon fluxes in an irrigated maize ecosystem. Agricultural and Forest Meteorology 176, 10–24. (View Details )

17.Li X, Li XW, Roth K, Menenti M, Wagner W. Preface 'Observing and modeling the catchment scale water cycle'. Hydrology and Earth System Sciences, 2011, 15(2): 597-601. doi:10.5194/hess-15-597-2011. (View Details )

18.Liu, S.M., Xu, Z.W., Wang, W.Z., Bai, J., Jia, Z., Zhu, M., & Wang, J.M. (2011). A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrology and Earth System Sciences, 15(4), 1291-1306. doi:10.5194/hess-15-1291-2011. (View Details | Download )

19.Li, X., S. Liang, G. Yu, W. Yuan, X. Cheng, J. Xia, T. Zhao, J. Feng, Z. Ma, and M. Ma. 2013. Estimation of gross primary production over the terrestrial ecosystems in China. Ecological Modelling 261-262:80-92. (View Details )

20.Song Y, Wang JM, Yang K, Ma MG, Li X, Zhang ZH, Wang XF. A revised surface resistance parameterisation for estimating latent heat flux from remotely sensed data. International Journal of Applied Earth Observation and Geoinformation, 2012, 17: 76-84, doi:10.1016/j.jag.2011.10.011. (View Details )

21.MA Mingguo. Quality Control and Evaluation for the Ground Observation Data of the Watershed Allied Telemetry Experimental Research. Remote Sensing Technology and Application, 2010, 25(6): 766-771. (View Details )

22.Wang Jian, Che Tao,Zhang Lixin,et al. Introduction on the experiment of cold region hydrological remote sensing and gound-based synchronous observation in the upstream of Heihe basin[J]. Journal of Gaciology and Geocryology),2009,31(2):189-197. (View Details )

23.Li Xin, Li Xiaowen, Li Zengyuan. Watershed Allied Telemetry Experimental Research(WATER) Datasets are Available for Open Access. Remote Sensing Technology and Application, 2010, 25(6): 761-765. (View Details )

24.Wang Liangxu, Wang Shuguo, Ran Youhua. Data Sharing and Data Set Application of Watershed Allied Telemetry Experimental Research. IEEE Geoscience and Remote Sensing Letters, 2014, 11(11):2020-2024. doi:10.1109/LGRS.2014.2319301 (View Details )

25.Wang, J., X. Li, L. Lu, and F. Fang. 2013. Estimating near future regional corn yields by integrating multi-source observations into a crop growth model. European Journal of Agronomy 49:126-140. (View Details )

26.Li, X. , Lu, L. , Yang, W. , & Cheng, G. . (2012). Estimation of evapotranspiration in an arid region by remote sensing—a case study in the middle reaches of the heihe river basin. International Journal of Applied Earth Observation & Geoinformation, 17(none), 0-93. (View Details )

27.Sun Qingsong, Qu Yonghua, Wang Jindi, Dong Jian. The Implementation of the OPe NDAP based Remote Sensing Data Distribution System. Remote Sensing Technology and Application, 2010, 25(6): 782-787. (View Details )

28.Yu WP, Ma MG, Wang XF, Song Y, Tan JL. Validation of MODIS land surface temperature products using ground measurements in the Heihe River Basin, China. Proceedings of SPIE - The International Society for Optical Engineering. 2011, 8174. doi:10.1117/12.897571. (View Details )

29.Bai YF, Wang J, Zhang BC, Zhang ZH, Liang J. Comparing the impact of cloudiness on carbon dioxide exchange in a grassland and a maize cropland in northwestern China. Ecological Research, 2012, 27(3): 615-623, DOI 10.1007/s11284-012-0930-z. (View Details )

30.Ma WQ, Ma YM, Hu ZY, Su B, Wang JM, Ishikawa H. Estimating surface fluxes over middle and upper streams of the Heihe River Basin with ASTER imagery. Hydrology and Earth System Sciences, 2011, 15(5): 1403-1413. doi:10.5194/hess-15-1403-2011. (View Details | Download )

31.Wang XF, Ma MG, Huang GH, Veroustraete F, Zhang ZH, Song Y, Tan JL. Vegetation primary production estimation at maize and alpine meadow over the Heihe River Basin, China. International Journal of Applied Earth Observation and Geoinformation, 2012, 17: 94-101, doi:10.1016/j.jag.2011.09.009. (View Details )

32.Xu, T., Liu, S., Xu, L., Chen, Y., Jia, Z., Xu, Z., Nielson, J. (2015). Temporal Upscaling and Reconstruction of Thermal Remotely Sensed Instantaneous Evapotranspiration. Remote Sensing. 7(3), 3400-3425. doi:10.3390/rs70303400. (View Details | Download )

33.Li S, Xiao J, Xu W, Yan H. Modelling gross primary production in the Heihe river basin and uncertainty analysis. International Journal of Remote Sensing, 2012, 33(3): 836-847, doi:10.1080/01431161.2011.577828. (View Details )

Support Program

The CAS (Chinese Academy of Sciences) Action Plan for West Development Project (No:KZCX2-XB2-09)

National Program on Key Basic Research Project (973 Program (No:2007CB714400)

User Limit

To respect the intellectual property rights, protect the rights of data authors,expand servglacials of the data center, and evaluate the application potential of data, data users should clearly indicate the source of the data and the author of the data in the research results generated by using the data (including published papers, articles, data products, and unpublished research reports, data products and other results). For re-posting (second or multiple releases) data, the author must also indicate the source of the original data.

Example of acknowledgement statement is included below: The data set is provided by National Tibetan Plateau Data Center (http://data.tpdc.ac.cn).

Related Resources

Sign In to add comments

Download Follow
Geographic coverage
East: 100.41 West: 100.41
South: 38.86 North: 38.86
  • File size: 41 MB
  • Browse count: 16,932 Times
  • Apply count: 32 Times
  • Share mode: offline
  • Temporal coverage: 2008-01-14 To 2012-01-18
  • Updated time: 2019-08-27
Contact Information
: Liu Qiang   LIU Qinhuo   MA Mingguo   Wang Weizhen   Huang Guanghui   ZHANG Zhihui   TAN Junlei  

Distributor: National Tibetan Plateau Data Center

Email: data@itpcas.ac.cn

Export metadata