Monthly evapotranspiration dataset with 1 km spatial resolution over the Heihe River Basin Version 2.0 (2000-2013)

ET (ET) monitoring is crucial to agricultural water resource management, regional water resource utilization planning and socio-economic sustainable development.The limitations of traditional ET monitoring methods mainly lie in that they cannot observe a large area at the same time and can only be limited to observation points. Therefore, the cost of personnel and equipment is relatively high, and they can neither provide surface ET data, nor provide ET data of different land use types and crop types. Quantitative monitoring of ET can be achieved by using remote sensing. The characteristics of remote sensing information are that it can not only reflect the macroscopic structure characteristics of the earth surface, but also reflect the microscopic local differences. Version 2.0 (second edition) of the surface evapotranspiration data set of the heihe river basin from 2000 to 2013 is based on multi-source remote sensing data and the latest ETWatch model is adopted to estimate the raster image data. Its temporal resolution is monthly scale and the spatial resolution is 1km scale. The data covers the whole basin in millimeters.Data types include monthly, quarterly, and annual data. The projection information of the data is as follows: Albers equal-area cone projection, Central longitude: 110 degrees, First secant: 25 degrees, Second secant: 47 degrees, Coordinates by west: 4000000 meter. File naming rules are as follows: Monthly cumulative ET value file name: heihe-1km_2013m01_eta.tif Heihe represents the heihe river basin, 1km represents the resolution of 1km, 2013 represents the year of 2013, m01 represents the month of January, eta represents the actual evapotranspiration data, and tif represents the data in tif format. Name of quarterly cumulative ET value file: heihe-1km_2013s01_eta.tif Heihe refers to heihe river basin, 1km refers to the resolution of 1km, 2013 refers to 2013, s01 refers to january-march, is the first quarter, eta refers to the actual evapotranspiration data, and tif refers to the data in tif format. Annual cumulative value file name: heihe-1km_2013y_eta.tif Among them, heihe represents heihe river basin, 1km represents the resolution of 1km, 2013 represents the year of 2013, y represents the year, eta represents the actual evapotranspiration data, and tif represents the data in tif format.

0 2020-08-10

Modeling ecohydrological processes and spatial patterns in the Upstream of Heihe River Basin (2000-2012) V2.0

The output data of the distributed eco-hydrological model (GBEHM) of the upper reaches of the black river include the spatial distribution data series of 1-km grid. Region: upper reaches of heihe river (yingxiaoxia), time resolution: month scale, spatial resolution: 1km, time period: 2000-2012. The data include evapotranspiration, runoff depth and soil volumetric water content (0-100cm). All data is in ASCII format. See basan.asc file in the reference directory for the basin space range. The projection parameter of the model result is Sphere_ARC_INFO_Lambert_Azimuthal_Equal_Area.

0 2020-08-10

Monthly groundwater table depth, soil moisture, evapotranspiration dataset with high spatial resolution over the Heihe River Basin (1981-2013)

This set of data is the simulation result of the newly developed land eco-hydrological model CLM_LTF.This model is on top of the land-surface process model CLM4.5 developed by NCAR, coupling the groundwater lateral flow module and considering the role of human irrigation. The model runs from 1981 to 2013, with a spatial resolution of 30 arc seconds (0.0083 degrees), a time step of 1,800 seconds, and a simulation range of the heihe river basin.Air force in 1981-2012 is used by the Chinese academy of sciences institute of the qinghai-tibet plateau of qinghai-tibet plateau more layers of data assimilation and simulation center development areas of China high space-time resolution ground meteorological elements drive data set, air is forced to use 2013 national meteorological information center of wind pressure high resolution made by the wet precipitation temperature radiation data set.The land cover data is a 1km land cover grid data set for the MICLCover heihe river basin, and the irrigation data is shown in "monthly 30-arcsecond resolution surface water and groundwater irrigation data set for the heihe river basin 1981-2013" of the scientific data center for cold and dry regions.The mode output is the monthly average. The document is described as follows: Groundwater depth data: heihe_zwt.nc 2cm soil moisture data: heihe_h2osoi_2cm. nc 100cm soil moisture data: heihe_h2osoi_100cm.nc Evaporation data: Heihe_evaptanspiration. Nc The data is in netcdf format.There are three dimensions, which are month, lat, and lon. Where, month is a month, and the value is 0-395, representing each month from 1981 to 2013. Lat is grid latitude information, and lon is grid longitude information. The data is stored in the data variable. The underground water depth data is in m, the soil moisture data is in m^3/m^3, and the evapotranspiration data is in mm/month

0 2020-08-10

Meteorological, albedo and evapotranspiration data set of hulugou shrub experimental area in the upper reaches of Heihe River (2012-2014)

The data set is the meteorological and observational data of hulugou shrub experimental area in the upper reaches of Heihe River, including meteorological data, albedo data and evapotranspiration data under shrubs. 1. Meteorological data: Qilian station longitude: 99 ° 52 ′ E; latitude: 38 ° 15 ′ n; altitude: 3232.3m, scale meteorological data from January 1, 2012 to December 31, 2013. Observation items include: temperature, humidity, vapor pressure, net radiation, four component radiation, etc. The data are daily scale data, and the calculation period is 0:00-24:00 2. Albedo: daily surface albedo data from January 1, 2012 to July 3, 2014, including snow and non snow periods. The measuring instrument is the radiation instrument on the 10m gradient tower in hulugou watershed. Among them, the data from August 4 to October 2, 2012 was missing due to instrument circuit problems, and the rest data quality was good 3. Evapotranspiration: surface evapotranspiration data of Four Typical Shrub Communities in hulugou watershed. The observation period is from July 18 to August 5, 2014, which is the daily scale data. The data include precipitation data, evaporation and infiltration data observed by lysimeter. The data set can be used to analyze the evapotranspiration data of alpine shrubs and forests. The evapotranspiration of grassland under canopy was measured by a small lysimeter with a diameter of 25 cm and a depth of 30 cm. Two lysimeters were set up in each shrub plot, and one lysimeter was set for each shrub in transplanting experiment. The undisturbed undisturbed soil column with the same height as the barrel is placed in the inner bucket, and the outer bucket is buried in the soil. During the embedding, the outer bucket shall be 0.5-1.0 cm higher than the ground, and the outer edge of the inner barrel shall be designed with a rainproof board about 2.0 cm wide to prevent surface runoff from entering the lysimeter. Lysimeter was set up in the nearby meteorological stations to measure grassland evapotranspiration, and a small lysimeter with an inner diameter of 25 cm and a depth of 30 cm was also set up in the sample plot of Picea crassifolia forest to measure the evaporation under the forest. All lysimeters are weighed at 20:00 every day (the electronic balance has a sensing capacity of 1.0 g, which is equivalent to 0.013 mm evaporation). Wind proof treatment should be taken to ensure the accuracy of measurement. Data processing method: evapotranspiration is mainly calculated by mass conservation in lysimeter method. According to the design principle of lysimeter lysimeter, evapotranspiration is mainly determined by the quality difference in two consecutive days. Since it is weighed every day, it is calculated by water balance.

0 2020-07-31

Moisture absorption and utilization dataset of desert plants in Heihe River Basin (2014-2015)

The data set of atmospheric water vapor absorption and utilization of desert plants, all of which are original data, including the liquid flow and environmental data of wild desert plants (Sitan village and Ejina Banner, Jingtai County), such as Tamarix, Bawang, Baici, Hongsha, etc., including the data of meteorology, photosynthesis, fluorescence and leaf surface humidity, as well as the data of gene transcriptome and expression regulation.

0 2020-07-31

Irrigation area in Zhangye city (1999-2011)

Irrigation area data of Zhangye City from 1999 to 2011, including total irrigation area (effective irrigation area, forest irrigation area, orchard irrigation area, forage irrigation area and other irrigation areas), water-saving irrigation area (sprinkler irrigation area, micro irrigation area, low-pressure pipe irrigation area, canal seepage prevention area and other water-saving irrigation areas), effective irrigation area data, and Ganzhou District, Shandan District Corresponding data of county, Gaotai County, Sunan County, Linze County and Minle County

0 2020-07-30

Socio-economic statistical dataset of the Zhangye (2001 - 2012)

Some economic data of Zhangye City from 2001 to 2012 include: per capita GDP, GDP, the proportion of fiscal revenue to GDP, per capita fiscal revenue, industrial contribution rate, the proportion of town population to total population, the proportion of added value of tertiary industry to GDP, the proportion of added value of secondary industry to GDP, industrial comprehensive benefit index, contribution rate of total assets, contribution rate of fixed assets, social labor productivity, G DP growth rate

0 2020-07-30

Data set of land use / land cover in the lower reaches of Heihe River Basin (2011)

The land use / land cover data set of Heihe River Basin in 2011 is the Remote Sensing Research Office of Institute of cold and drought of Chinese Academy of Sciences. Based on the remote sensing data of landsatm and ETM in 2011, combined with field investigation and verification, a 1:100000 land use / land cover image and vector database of Heihe River Basin is established. The data set mainly includes 1:100000 land use graph data and attribute data in the lower reaches of Heihe River Basin. The land cover data of 1:100000 (2011) in Heihe River Basin and the previous land cover are classified into six first-class categories (cultivated land, forest land, grassland, water area, urban and rural residents, industrial and mining land and unused land) and 25 second-class categories by the same hierarchical land cover classification system. The data type is vector polygon and stored in shape format.

0 2020-07-30

Field LAI dataset in the Heihe River basin (2011)

The dataset is Lai data of ground sample points in Heihe River Basin, collected by LAI-2000 canopy analyzer. The collection area is located in Zhangye rural demonstration base, Ejina Banner, Jiuquan Satellite Center (2011) and other areas. The main measured vegetation is corn. The Lai value of maize was obtained by using lai2000, and the observation was repeated twice in the mode of one up four down. Cd202 was used to obtain the leaf area of each leaf of maize plant, and three maize plants were collected.

0 2020-07-30

Dataset of shrub interception and transpiration in Tianlaochi watershed of Qilian Mountain (2012)

This data includes three parts of data, namely shrub water holding experiment, shrub interception experiment and shrub transpiration experiment data. Shrub water holding experiment: select the two shrub types of Caragana jubata and Potentilla fruticosa, respectively pick the branches and leaves of the two vegetation types, weigh their fresh weight, carry out water holding experiment, measure the saturated weight of branches and leaves, dry weight of branches and leaves, dry weight of branches and leaves after completion, and finally obtain the data of branches, leaves and total water holding capacity. Shrub interception experiment: two shrubs, Caragana jubata and Potentilla fruticosa, were also selected and investigated. 30 rain-bearing cups were respectively arranged under the two shrubs. after each rainfall, penetration rainfall was measured and observed from June 1, 2012 to September 10, 2012. Shrub Transpiration Experiment: Potentilla fruticosa on July 14, Caragana jubata on August 5, Salix gilashanica on August 15, 2012. The measurement is made every hour according to the daily weather conditions.

0 2020-07-30