HiWATER: SPOT dataset (2012)

This dataset includes one scene acquired on (yy-mm-dd) 2012-09-06, covering the natural oasis eco-hydrology experimental area in the lower reaches of the Heihe River Basin. This datum contains panchromatic and multi-spectral bands, with spatial resolution of 2.5 m and 10 m, respectively. The data product level of this image is Level 1. QuickBird dataset was acquired through purchase.

0 2019-09-13

WATER: IKONOS dataset on Nov. 05, 2005

The IKONOS satellite is a commercial satellite launched by the Space Imaging EOSAT on September 24, 1999. It is the world's first commercial remote sensing satellite to provide high-resolution satellite images. The successful launch of the IKONOS satellite not only provides satellite images with high definition and a resolution of up to 1 meter, but also opens up a new way to obtain the latest basic geographic information faster and more economically, and create a new standard of commercial satellite images. The orbital altitude is 681km, the orbital inclination is 98.1 degrees, and the revisit period is 1.5-2.9. days. It has 4 multi-spectral bands and 1 full-color band with spatial resolutions of 1 and 4 meters, respectively. The Heihe River Basin currently has 1 scene of IKONOS data which covers the ice-channel watershed encryption observation area, and the acquisition time is November 5,2005. The image includes a full-color image with a spatial resolution of 1m and a multi-spectral image with a spatial resolution of 4m. The product grade is L2, and it is geometrically corrected. IKONOS data is mainly used as high-resolution background data in the Heihe experiment. IKONOS data was purchased and mainly used as high-resolution background data in the Heihe experiment.

0 2019-09-13

WATER: Dataset of ground truth measurement synchronizing with ALOS PALSAR in the Linze grassland foci experimental area on June 10, 2008

The dataset of ground truth measurement synchronizing with ALOS PALSAR was obtained in the Linze grassland foci experimental area on Jun. 10, 2008. The data were in FBS mode and HH/HV polarization combinations, and the overpass time was approximately at 23:39 BJT. Observations were carried out in plots A, B, C, D and E, which were divided into 6×6 subsites, with each one spanning a 120×120 m2 plot. Soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring and the mean soil temperature from 0-5cm by the probe thermometer were measured in A, B and C; the soil temperature, soil moisture, the loss tangent, soil conductivity, the real part and the imaginary part of soil complex permittivity by the POGO soil sensor, and the mean soil temperature from 0-5cm by the probe thermometer in D and E. Data were archived in Excel file. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.

0 2019-09-12

Vector dataset of glaciers and glacial lakes in the Boqu Basin in Central Himalaya (1976-2010)

This is the 1976, 1991, 2000, and 2010 vector data set of glaciers and glacial lakes in the Boqu Basin in Central Himalaya based on Landsat satellite images. The data source is from Landsat remote images. 1976: LM21510411975306AAA05, LM21510401976355AAA04 1991: LT41410401991334XXX02, LT41410411991334XXX02 2000: LE71410402000279SGS00, LE71400412000304SGS00, LE71410402000327EDC00, LE71410412000327EDC00 2010: LT51400412009288KHC00, LT51410402009295KHC00, LT51410412009311KHC00, LT51410402011237KHC00. The boundaries of glaciers and glacial lakes are extracted manually from the various remote sensing images. The extraction error of the boundaries of glaciers and glacial lakes is estimated to be 0.5 pixels. Data file: Glacial_1976: Glacier vector data in 1976 Glacial_1991: Glacier vector data in 1991 Glacial_2000: Glacier vector data in 2000 Glacial_2010: Glacier vector data in 2010 Glacial_Lake_1976: Glacial lake vector data in 1976年 Glacial_Lake_1991: Glacial lake vector data in 1991 Glacial_Lake_2000: Glacial lake vector data in 2000 Glacial_Lake_2010: Glacial lake vector data in 2010 The glacial lake vector data fields include Number, name, latitude and longitude, altitude, area, orientation, type of glacial lake, length, width, and distance from the glacier.

0 2019-09-12

WATER: Dataset of ground truth measurement synchronizing with the airborne WiDAS mission and Envisat ASAR in the Linze station foci experimental area on July 11, 2008

The dataset of ground truth measurement synchronizing with the airborne WiDAS mission and Envisat ASAR was obtained in the Linze station foci experimental area on Jul. 11, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:26 BJT. The simultaneous ground data included the following items: (1) soil moisture (0-5cm) measured once by the cutting ring method at the corner points of the 40 subplots of the west-east desert transit zone strip , once by the cutting ring method in the nine subplots of the north-south desert transit zone, nine times in the LY06 and LY07 strips quadrates,and once by the cutting ring and once by ML2X Soil Moisture Tachometer in the Wulidun farmland. The preprocessed soil volumetric moisture data were archived as Excel files. (2) the surface radiative temperature measured by three handheld infrared thermometer (5# and 6# from Cold and Arid Regions Environmental and Engineering Research Institute, and one from Institute of Geographic Sciences and Natural Resources, which were all calibrated) in LY06 and LY07 strips (49 points and repeated three times), and Wulidun farmland quadrates (various points and repeated three times). Data were archived as Excel files. (3) spectrum of maize, soil and soil with known moisture measured by ASD Spectroradiometer (350~2 500 nm) from BNU and the reference board (40% before Jun. 15 and 20% hereafter) in Wulidun farmland. Raw spectral data were binary files , which were recorded daily in detail, and pre-processed data on reflectance (by ViewSpecPro) were archived as Excel files. (4) maize BRDF measured by ASD Spectroradiometer (350~2 500 nm) from BNU, the reference board (40% before Jun. 15 and 20% hereafter), two observation platforms of BNU make and one of Institute of Remote Sensing Applications make in Wulidun farmland. Raw spectral data were archived as binary files, which were recorded daily in detail, and pre-processed data on reflectance and transmittivity were archived as text files (.txt). (5) LAI measured in the maize quadrate, poplar quadrate and desert scrub quadrate in Wulidun farmland, the desert transit zone strips and the poplar forest quadrate by the fisheye camera (CANON EOS40D with a lens of EF15/28), shooting straight downwards, with exceptions of higher plants, which were shot upwards. Data included original photos (.JPG) and those processed by can_eye5.0 (in excel). (6) LAI of maize measured by LAI2000 in Linze station quadrates and Wulidun farmland quadrates. Data educed from LAI2000 periodically were archived as text files (.txt) and marked with one ID. Raw data (table of word and txt) and processed data (Excel) were included. Besides, observation time, the observation method and the repetition were all archived. (7) LAI measured by the ruler and the set square in B2 and B3 of Linze station quadrates. Data were archived as Excel files. See the metadata record “WATER: Dataset of setting of the sampling plots and stripes in the Linze station foci experimental area” for more information of the quadrate locations.

0 2019-09-12

WATER: Dataset of ground truth measurements synchronizing with Landsat TM in the Biandukou foci experimental area (Mar. 17, 2008)

The dataset of ground truth measurements synchronizing with Landsat TM was obtained in the Biandukou foci experimental area from 11:10-13:30 on Mar. 17, 2008. Those provide reliable ground data for objects modelling and background modelling, remote sensing image simulation and scaling. Simultaneous with the satellite overpass, numerous ground data were collected, spectrum (ASD Fieldspec FRTM (Boulder, Co, USA), 350nm-2500nm, 3nm for the visible near-infrared band and 10nm for the shortwave infrared band), the surface temperature, atmospheric parameters, the soil profile gravimetric moisture (0-1cm, 1-3cm and 3-5cm), the shallow layer frost depth and the soil roughness in C1, G1, W1, W2, B1 and B2, mostly the grassland, the wheat stubble land, the deep plowed land and the rape stubble land. The quadrates of 90m×90m and 450m×450m were compartmentalized into 81 subgrids of 10m×10m and 50m×50m. Based on the resolution of 30m×30m and 150m×150m, the influence of adjacent eight pixels on the center pixel was studied. Section lines of each subgrid were adopted to acquire the pixel spectrum, which were measured more than once for the mean value. The spectrum data were archived in the ASCII format, with the first five rows as the file header and the following two columns as wavelength (nm) and reflectance (percentage) respectively. The .txt file was not reflectance but intermediate file for further calculation. Raw data were binary files direct from ASD (by ViewSpecPro). The surface radiative temperature and the physical temperature were measured by the handheld infrared thermometer. Besides, the cover type was also recorded. The data can be opened by Microsoft Office. Atmospheric parameters were measured by CE318 to retrieve the total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, and various parameters at 550nm to obtain horizontal visibility with the help of MODTRAN or 6S. Those provide reliable data for atmosphere correction of the same period in this area. The gravimetric soil moisture (samples from 0-1cm, 1-3cm and 3-5cm) was measured by the microwave drying method. The frost depth by the chopstick and the ruler. The soil was considered frozen when it was hard and with ice crystal. The data can be opened by Microsoft Office. Nine data files were included, TM data, CE318 data, B1, B2, C1, G1, W1 and W2.

0 2019-09-12

HiWATER: COSMO-SkyMed dataset (2012)

This dataset includes three scenes, covering the artificial oasis eco-hydrology experimental area of the Heihe River Basin, which were acquired on (yy-mm-dd hh:mm, BJT) 2012-07-25 07:12, 2012-07-28 19:55, 2012-08-02 07:12. The data were all acquired at PingPong mode with product level of SLC, and these three images are of VV/VH, HH/HV and VV/VH polarization, respectively. COSMO-SkyMed dataset was acquired from Italian Space Agency (ASI) “COSMO-SkyMed project 1720: HYDROCOSMO” (Courtesy: Prof. Shi Jiancheng from the State Key Laboratory of Remote Sensing Science of China).

0 2019-09-12

WATER: Dataset of ground truth measurements synchronizing with Envisat ASAR in the Biandukou foci experimental area (Mar. 14, 2008)

The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in C1, W2 and B2 of the Biandukou foci experimental area on Mar. 14, 2008, from 23:30 on 14 to 1:00 on 15, to be specific. The ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 23:21 BJT. The wheat stubble land, the deep plowed land and the rape stubble land were chosen for measurements. (1) The surface radiative temperature and the physical temperature were measured by the handheld infrared thermometer. Besides, the land cover type was also recorded. The data can be opened by Microsoft Office. (2) The gravimetric soil moisture (samples from 0-1cm, 1-3cm, 3-5cm, 5-10cm and 10-20cm) was measured by the microwave drying method. (3) The frost depth by the chopstick and the ruler. The soil was considered frozen when it was hard and with ice crystal. The data can be opened by Microsoft Office. Four data files were included, ASAR data, C1, W2 and B2 data.

0 2019-09-12

SRAP AOD dataset of Asia (2002-2011)

The “China Collection 1.0" aerosol optical depth (AOD) data set was produced using visible light wave remote sensing inversion. The raw data come from the MODIS sensors on Terra and Aqua. The temporal coverage of the data is from 2002 to 2011, the temporal resolution is daily, the spatial coverage is the Asian continent, and the spatial resolution is 0.1°. The remote sensing inversion method uses the independently developed SRAP algorithm to invert the aerosol optical depth over the land. The algorithm takes the BRDF characteristics of the surface into consideration, which makes it applicable to aerosol optical depth inversion on bright and dark surfaces. In addition, aerosol products over the ocean of MOD04/MYD04 are superimposed. The verification of the measured site shows that the relative deviation of the aerosol optical depth data in Asia is within 20%. The data are stored as an hdf file each day, each consisting of Terra AOD and Aqua AOD at 550 nm.

0 2019-09-12

WATER: Dataset of ground truth measurement synchronizing with PROBA CHRIS in the A'rou foci experimental area on Jun. 23, 2008

The dataset of ground truth measurement synchronizing with PROBA CHRIS was obtained in No. 2 and 3 quadrates of the A'rou foci experimental area on Jun. 23, 2008. Observation items included: (1) quadrates investigation including GPS by GARMIN GPS 76, plant species by manual cognition, the plant number by manual work, the height by the measuring tape repeated 4-5 times, phenology by manual work, the coverage by manual work (compartmentalizing 0.5m×0.5m into 100 to see the percentage the stellera takes) and the chlorophyll content by SPAD 502. Data were archived in Excel format. (2) roughness by the self-made roughness board and the camera. The processed data were archived as .txt files. (3) BRDF by ASD FieldSpec (350~2 500 nm), with 20% reference board and the observation platform made by Beijing Normal University. The processed reflectance and transmittivity were archived as .txt files. (4) LAI of stellera and pasture by the fisheye camera (CANON EOS40D with a lens of EF15/28), shooting straight downwards, with exceptions of higher plants, which were shot upwards. Data included original photos (.JPG) and those processed by can_eye5.0 (in Excel). For more details, see Readme file. Five files were included, spectrum in No.2 quadrate, multiangle observations in No.2 and 3 quadrates, roughness photos in No.2 and 3 quadrates, the fisheye camera observations, and the No.2 and 3 quadrates investigation.

0 2019-09-12