WATER: EO-1 Hyperion dataset

Eo-1 (Earth Observing Mission) is a new Earth Observing satellite developed by NASA to replace Landsat7 in the 21st century. It was launched on November 21, 2000.The orbit of eo-1 satellite is basically the same as that of Landsat7, which is a solar synchronous orbit with an orbital altitude of 705km and an inclination Angle of 98.7°, which is 1min less than that of Landsat7 and crosses the equator.On board of EO 1 3 kinds of sensors, namely, the Advanced Land Imager (ALI (the Advanced Land Imager), atmospheric correction instrument AC (Atmosp heric Corrector) and compose a specular as spectrometer (Hyperion), Hyperion sensor is first spaceborne hyperspectral mapping measurement instrument, the hyperspectral data a total of 242 bands, spectral range is 400 ~ 2500 nm, spectral resolution up to 10 nm, ground resolution of 30 m. Currently, there are 6 scenes of eo-1 Hyperion data in heihe river basin.The coverage and acquisition time were: 4 scenes in the encrypted observation area of zhangye urban area + yingke oasis encrypted observation area (2007-09-10, 2008-05-12, 2008-05-20, 2008-07-15).Two scenes of the iceditch watershed observation area were encrypted, the time was 2008-03-17, 2008-03-22, respectively. Product grade is L1 without geometric correction. The eo-1 Hyperion remote sensing data set of heihe integrated remote sensing joint experiment was acquired by researcher wang jian and Beijing normal university through purchase. (note: "+" represents simultaneous coverage)

0 2020-03-09

WATER: Envisat MERIS dataset

The medium resolution imaging spectrometer (MERIS) is a sensor mounted on the ENVISAT satellite of the European Space Agency. It has 15 spectral segments and scans the earth's surface by push sweep method. The incident angle of the point below the star is 68.5 degrees and the width is 1150km. At present, there are 56 ENVISAT MERIS data in Heihe River Basin. Acquisition time: 2008-05-01, 2008-05-02, 2008-05-03, 2008-05-05, 2008-05-07, 2008-05-08, 2008-05-11, 2008-05-14, 2008-05-17 (2 scenes), 2008-05-20 (2 scenes), 2008-05-21 (2 scenes), 2008-05-23 (2 scenes), 2008-05-24, 2008-05-30, 2008-05-31, 2008-06-01, 2008-06-02, 2008-06-05, 2008-06-06, 2008-06-09, 2008-06-12, 2008-06-15, 2008-06-18, 2008-06-21, 2008-06-22, 2008-06-24 (2 scenes), 2008-06-25, 2008-06-27, 2008-06-30, 2008-07-01, 2008-07-02, 2008-07-04, 2008-07-07, 2008-07-10, 2008-07-11, 2008-07-13 (2 scenes), 2008-07-13, 2008-07-16, 2008-07-17, 2008-07-20, 2008-07-23 (2 scenes), 2008-07-26 (2 scenes), 2008-07-27, 2008-07-29, 2008-07-30, 2008-08-01, 2008-08-02. The product level is L1B without geometric correction. The ENVISAT MERIS remote sensing data set of Heihe integrated remote sensing joint experiment was obtained through the China EU "dragon plan" project (Project No.: 5322) (see the data use statement for details).

0 2020-03-09

WATER: Envisat ASAR dataset

In 2007, 2008 and 2009, ENVISAT ASAR data 179 scenes, covering the whole Heihe River Basin. Among them, there were 63 in 2007, 71 in 2008 and 45 in 2009. Imaging mode and acquisition time are respectively: app can select polarization mode from August 15, 2007 to December 23, 2007, from January 02, 2008 to December 202009-02-15, 2008 to September 06, 2009; imp imaging mode from June 19, 2009 to July 12, 2009; WSM wide mode from January 1, 2007 to December 302008-01-01, 2007 to November 28, 2008, from March 13, 2009 to May 22, 2009. The product level is L1B, which is amplitude data without geometric correction. The ENVISAT ASAR remote sensing data set of Heihe comprehensive remote sensing joint experiment is mainly obtained through the China EU "dragon plan" project (Project No.: 5322 and 5344); the WSM wide model data in 2007 and January 2008 are obtained from Professor Bob Su of ITC; the 8-view app can be purchased from the earth observation and digital earth center of Chinese Academy of Sciences.

0 2020-03-09

Integrated remote sensing experiment of Heihe River: ENVISAT AATSR remote sensing data set

Advanced along orbit scanning radiometer (AATSR) is an advanced tracking scanning radiometer sensor mounted on the European Space Agency ENVISAT satellite. It is one of many high-precision and stable infrared radiometers for retrieving sea surface temperature (SST). Its accuracy can reach 0.3k, and it can also be used to record meteorological data. AATSR is a multi-channel imaging radiometer. Its main goal is to provide global ocean surface temperature with high accuracy and stability for monitoring the earth's climate change. At present, there are 38 ENVISAT AATSR images in Heihe River Basin. The acquisition time is 2008-05-17 (2 scenes), 2008-05-27 (2 scenes), 2008-05-30 (2 scenes), 2008-06-02 (2 scenes), 2008-06-12 (2 scenes), 2008-06-15 (2 scenes), 2008-06-18 (2 scenes), 2008-06-21 (2 scenes), 2008-07-04 (2 scenes), 2008-07-072008-07-102008-07-172008-07-202008-07-232008-07-262008-08-022008-08-052008-08-082008 -08-11,2008-08-14,2008-08-21,2008-08-24,2008-08-27,2008-08-30,2008-09-06,2008-09-12,2008-09-15,2008-09-18,2008-09-25。 The product level is L1B, which has been corrected by radiation but not by geometry. The ENVISAT AATSR remote sensing data set of Heihe comprehensive remote sensing joint test was obtained through the China EU "dragon plan" project (Project No.: 5322) (see the data use statement for details).

0 2020-03-09

Heihe integrated remote sensing joint experiment: ASTER Remote Sensing Data Set (2007-2008)

ASTER data in 2007 and 2008 are 15 scenes, covering the whole Heihe River Basin. Acquisition time: 2007-10-22 (1 scene), 2007-11-14 (1 scene), 2007-11-23 (1 scene), 2007-12-04 (1 scene), 2008-01-28 (1 scene), 2008-02-13 (1 scene), 2008-05-03 (4 scenes), 2008-05-05 (1 scene), 2008-05-17 (1 scene), 2008-06-04 (2 scenes), 2008-06-13 (1 scene). The product level is L1B, which has been calibrated by radiation and geometry. The ASTER Remote sensing data set of Heihe integrated remote sensing joint experiment was obtained from NASA's data website (https://wist.echo.nasa.gov/) through international cooperation.

0 2020-03-09

Integrated remote sensing joint experiment of Heihe River: alos PALSAR remote sensing data set (2008)

The phased array type l-land synthetic aperture radar (PALSAR) is a phased array L-band SAR sensor mounted on alos satellite. The sensor has three observation modes: high resolution, scanning synthetic aperture radar and polarization, which make it possible to obtain a wider ground width than the general SAR. At present, there are 13 scenes of ALOS pallsar data in Heihe River Basin. The coverage and acquisition time are as follows: 1 scene in the northeast of Zhangye City, HH / HV polarization, 2008-04-25; 2 scenes in Binggou basin + Arjun encrypted observation area, HH / HV polarization, 2008-05-122008-06-27; 2 scenes in Dayekou basin + Yingke oasis intensified observation area, HH / HV polarization, 2008-05-122008-06-27; observation station encrypted observation area Survey area + Linze station densified observation area + Linze grassland densified observation area 2 scenes, HH / HV polarization, time 2008-05-122008-06-27; Linze station densified observation area 1 scene, HH / HV polarization, time 2008-05-12; Binggou basin densified observation area 1 scene, HH / HV polarization, time 2008-07-14; bindukou densified observation area 4 scenes, 2008-04-25 2 scenes, HH / HV polarization, 2008-06-10 2 scenes, HH pole Change. The product level is L1 without geometric correction. The alos PALSAR remote sensing data set of Heihe comprehensive remote sensing joint experiment was obtained from JAXA by Dr. Takeo tadono, researcher Ye Qinghua and Professor Shi Jiancheng (the cooperation project between Qinghai Tibet Institute of Chinese Academy of Sciences and JAXA). (Note: "+" means to overwrite at the same time)

0 2020-03-09

Radiometer and scatterometer data for Antarctica and the Arctic ice sheet (1978-2015)

The microwave radiometer data set comprises brightness temperature data from SMMR (1978-1987), SSM/I (1987-2009) and SSMIS (2009-2015), with temporal coverage from 1978 to 2015 and a spatial resolution of 25 km. Each Antarctic data file consists of 316*332 grids, and each Arctic freeze-thaw data file consists of 304*448 grids. The microwave scatterometer data set comprises backscattering data from QScat (2000-2009) and ASCAT (2009-2015), with a temporal coverage from 2000 to 2015 and a spatial resolution of 4.45 km. Each Antarctic data file consists of 1940*1940 grids, and each Arctic data file consists of 810*680 grids. The temporal resolution of the data set is one day, and the data cover both Antarctica and Arctic ice sheets.

0 2020-01-19

Long-term surface soil freeze-thaw states dataset of the Three-River_Source National Park using the dual-index algorithm (1979-2015)

This data set uses SMMR (1979-1987), SSM / I (1987-2009) and ssmis (2009-2015) daily brightness temperature data, which is generated by double index (TB V, SG) freeze-thaw discrimination algorithm. The classification results include four types: frozen surface, melted surface, desert and water body. The data covers the source area of three rivers, with a spatial resolution of 25.067525 km. It is stored in geotif format in the form of ease grid projection. Pixel values represent the state of freezing and thawing: 1 for freezing, 2 for thawing, 3 for deserts, 4 for water bodies. Because all TIF files in the dataset describe the scope of Sanjiangyuan National Park, the row and column number information of these files is unchanged, and the excerpt is as follows (where the unit of cellsize is m): ncols 52 nrows 28 cellsize 25067.525 nodata_value 0

0 2020-01-09

Seasonal cycles of lakes on the Tibetan Plateau detected by Sentinel-1 SAR data

The long-term evolution of lakes on the Tibetan Plateau (TP) could be observed from Landsat series of satellite data since the 1970s. However, the seasonal cycles of lakes on the TP have received little attention due to high cloud contamination of the commonly-used optical images. In this study, for the first time, the seasonal cycle of lakes on the TP were detected using Sentinel-1 Synthetic Aperture Radar (SAR) data with a high repeat cycle. A total of approximately 6000 Level-1 scenes were obtained that covered all large lakes (> 50 km2) in the study area. The images were extracted from stripmap (SM) and interferometric wide swath (IW) modes that had a pixel spacing of 40 m in the range and azimuth directions. The lake boundaries extracted from Sentinel-1 data using the algorithm developed in this study were in good agreement with in-situ measurements of lake shoreline, lake outlines delineated from the corresponding Landsat images in 2015 and lake levels for Qinghai Lake. Upon analysis, it was found that the seasonal cycles of lakes exhibited drastically different patterns across the TP. For example, large size lakes (> 100 km2) reached their peaks in August−September while lakes with areas of 50−100 km2 reached their peaks in early June−July. The peaks of seasonal cycles for endorheic lakes were more pronounced than those for exorheic lakes with flat peaks, and glacier-fed lakes with additional supplies of water exhibited delayed peaks in their seasonal cycles relative to those of non-glacier-fed lakes. Large-scale atmospheric circulation systems, such as the westerlies, Indian summer monsoon, transition in between, and East Asian summer monsoon, were also found to affect the seasonal cycles of lakes. The results of this study suggest that Sentinel-1 SAR data are a powerful tool that can be used to fill gaps in intra-annual lake observations.

0 2020-01-07

Snow depth product for Sanjiangyuan from 1980 to 2018

This dataset was derived from long-term daily snow depth in China based on the boundary of the three-river-source area. The snow depth ranges from 0 to 100 cm, and the temporal coverage is from January 1 1980 to December 31 2018. The spatial and temporal resolutions are 0.25o and daily, respectively. Snow depth was produced from satellite passive microwave remote sensing data which came from three different sensors that are SMMR, SSM/I and SSMI/S. Considering the systematic bias among these sensors, the inter-sensor calibrations were performed to obtain temporal consistent passive microwave remote sensing data. And the long-term daily snow depth in China were produced from this consistent data based on the spectral gradient method.

0 2019-12-20