Long-term series of daily snow depth dataset in China (1979-2019)

This data set is an upgraded version of the “Long-term series of daily snow depth dataset in China". This dataset provides daily data of snow depth distribution in China from January 1, 1979, to December 31, 2019, with a spatial resolution of 0.25 degrees. The original data used to derive the snow depth dataset are the daily passive microwave brightness temperature data (EASE-Grid) from SMMR (1979-1987), SSM/I (1987-2007) and SSMI/S (2008-2019) which were archived in the National Snow and Ice Data Center (NSIDC). Because the brightness temperatures come from different sensors, there is a certain system inconsistency among them. Therefore, before the derivation of snow depth, the inter-sensor calibration were performed to improve the temporal consistency of the brightness temperature data. Based on the calibrated brightness temperatures, the modified Chang algorithm developed by Dr. Tao Che, was used to retrieve daily snow depth. The algorithm details were introduced in the data specification document- “Long-term Sequence Data Set of China Snow Depth (1979-2019) Introduction. doc". The projection of the data set is latitude and longitude. The data of each day was stored in a file, and the naming convention of which is year + day; for example, 1990001 represents the first day of 1990, and 1990207 represents the 207th day of 1990. For a detailed data description, please refer to the data specification document.

0 2020-03-19

Long-term series of daily snow depth in Euroasia (1980-2016)

The “long-term series of daily snow depth in Eurasia” was produced using the passive microwave remote sensing data. The temporal range is 1980~2016, and the coverage is the Eurasia continent. The spatial resolutions is 0.25° and the temporal resolution is daily. A dynamic brightness temperature gradient algorithm was used to derive snow depth. In this algorithm, the spatial and temporal variations of snow characteristics were considered and the spatial and seasonal dynamic relationships between the temperature difference between 18 GHz and 36 GHz and the measured snow depth were established. The long-term sequence of satellite-borne passive microwave brightness temperature data used to derive snow depth came from three sensors (SMMR, SSM/I and SSMI/S), and there is a certain system inconsistency among them. So, the inter-sensor calibration was performed to improve the temporal consistency of these brightness temperature data before snow depth derivation. The accuracy analysis shows that the relative deviation of Eurasia snow depth data is within 30%. The data are stored as a txt file every day, each file includes a file header (projection mode) and a 720*332 snow depth matrix, and each snow depth represents a 0.25°*0.25° grid. For details of the data, please refer to data specification “Snow depth dataset of Eurasian (Version 1.0) (1980-2016).doc”

0 2020-03-13

Radiometer and scatterometer data for Antarctica and the Arctic ice sheet (1978-2015)

The microwave radiometer data set comprises brightness temperature data from SMMR (1978-1987), SSM/I (1987-2009) and SSMIS (2009-2015), with temporal coverage from 1978 to 2015 and a spatial resolution of 25 km. Each Antarctic data file consists of 316*332 grids, and each Arctic freeze-thaw data file consists of 304*448 grids. The microwave scatterometer data set comprises backscattering data from QScat (2000-2009) and ASCAT (2009-2015), with a temporal coverage from 2000 to 2015 and a spatial resolution of 4.45 km. Each Antarctic data file consists of 1940*1940 grids, and each Arctic data file consists of 810*680 grids. The temporal resolution of the data set is one day, and the data cover both Antarctica and Arctic ice sheets.

0 2020-01-19

Long-term surface soil freeze-thaw states dataset of the Three-River_Source National Park using the dual-index algorithm (1979-2015)

This data set uses SMMR (1979-1987), SSM / I (1987-2009) and ssmis (2009-2015) daily brightness temperature data, which is generated by double index (TB V, SG) freeze-thaw discrimination algorithm. The classification results include four types: frozen surface, melted surface, desert and water body. The data covers the source area of three rivers, with a spatial resolution of 25.067525 km. It is stored in geotif format in the form of ease grid projection. Pixel values represent the state of freezing and thawing: 1 for freezing, 2 for thawing, 3 for deserts, 4 for water bodies. Because all TIF files in the dataset describe the scope of Sanjiangyuan National Park, the row and column number information of these files is unchanged, and the excerpt is as follows (where the unit of cellsize is m): ncols 52 nrows 28 cellsize 25067.525 nodata_value 0

0 2020-01-09

Snow depth product for Sanjiangyuan from 1980 to 2018

This dataset was derived from long-term daily snow depth in China based on the boundary of the three-river-source area. The snow depth ranges from 0 to 100 cm, and the temporal coverage is from January 1 1980 to December 31 2018. The spatial and temporal resolutions are 0.25o and daily, respectively. Snow depth was produced from satellite passive microwave remote sensing data which came from three different sensors that are SMMR, SSM/I and SSMI/S. Considering the systematic bias among these sensors, the inter-sensor calibrations were performed to obtain temporal consistent passive microwave remote sensing data. And the long-term daily snow depth in China were produced from this consistent data based on the spectral gradient method.

0 2019-12-20

Dataset of microwave brightness temperature and the freeze-thaw process for medium-to-large lakes in the High Asia Region (2002-2016)

The High Asia region is an area sensitive to global changes in mid-latitude regions and is a hotspot for research. The lakes in the territory are scattered, and the lake freeze-thaw process is one of the key factors sensitive to global change. Due to the large difference in the dielectric constant between ice and water, satellite-borne passive microwave remote sensing is weather insensitive and has a high revisiting rate; thus, it can achieve rapid monitoring of the freeze-thaw state of lakes. According to the area ratio of the lake and the land surface in the sub-pixels of passive microwave radiometer data, this data set represents the lake brightness temperature information of the pixel (sub-pixel level) by applying the hybrid pixel decomposition method in order to monitor the lake freeze-thaw process in the High Asia region. Thus, by adopting a variety of passive microwave data, time series of lake brightness temperature and freeze-thaw status were obtained for a total of 51 medium to large lakes from 2002 to 2016 in the High Asia region. Using cloudless MODIS optical products as validation data, three lakes of different sizes in different regions of High Asia, i.e., Hoh Xil Lake, Dagze Co Lake, and Kusai Lake, were selected for freeze-thaw detection validation. The results indicated that the lake freeze-thaw parameters obtained by microwave and optical remote sensing were highly consistent, and the correlation coefficients reached 0.968 and 0.987. This data set contained the time series brightness temperature of lakes and the freeze-thaw parameters of lake ice, which could be used to further invert the characteristic parameters of lakes and enhance the understanding of lake ice freezing and thawing in the High Asia region. This database will be useful in the assessment of climatic and environmental changes in the High Asia region and in global climatic change response models. The data set consists of two parts: the passive microwave remote sensing brightness temperature data set of 51 lakes in the High Asia region from 2002 to 2016, with an observation interval of 1 to 2 days, and the lake ice freeze-thaw data set obtained by estimation of the lake brightness temperature. The files are the lake brightness temperature data via the nearest neighbour method and pixel decomposition in the form of a .zip file (12 MB) and the lake freeze-thaw data set for 51 lakes in the High Asia region from 2002 to 2016 in the form of an .xls file (0.1 MB).

0 2019-09-15

WATER: Dataset of ground truth measurement synchronizing with Envisat ASAR in the arid region hydrological experimental area during the pre-observation period on Sep. 19, 2007

The dataset of ground truth measurement synchronizing with Envisat ASAR was obtained in the arid region hydrological experimental area on Sep. 19, 2007 during the pre-observation period. One scene of Envisat ASAR image was captured on Sep. 19. The data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:29 BJT. Those provide reliable ground data for remote sensing retrieval and validation of soil moisture from Envisat ASAR image. Observation items included: (1) soil moisture measured by the cutting ring method in Linze reed land, Zhangye farmland, Zhangye gobi, Linze maize land, Linze alfalfa land, Zhangye weather station, and Linze wetland. (2) GPS measured by GARMIN GPS 76 (3) vegetation measurements including the vegetation height, the green weight, the dry weight, the sampling method, and descriptions on the land type, uniformity and dry and wet conditions (4) atmospheric parameters at Daman Water Management office measured by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 and can be opened by ASTPWin. ReadMetext files (.txt) is attached for detail. Processed data (after retrieval of the raw data) archived as Excel files are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (5) roughness measured by the roughness plate together with the digital camera. The coordinates of the sample would be got with the help of ArcView; and after geometric correction, surface height standard deviation (cm) and correlation length (cm) could be acquired based on the formula listed on pages 234-236, Microwave Remote Sensing (Vol. II). The roughness data were initialized by the sample name, which was followed by the serial number, the name of the file, standard deviation and correlation length. Each text files (.txt) file is matched with one sample photo and standard deviation and correlation length represent the roughness. In addition, the length of 101 radius is also included for further checking.

0 2019-09-13

WATER: Dataset of ground truth measurement synchronizing with ALOS PALSAR in the Linze grassland foci experimental area on June 10, 2008

The dataset of ground truth measurement synchronizing with ALOS PALSAR was obtained in the Linze grassland foci experimental area on Jun. 10, 2008. The data were in FBS mode and HH/HV polarization combinations, and the overpass time was approximately at 23:39 BJT. Observations were carried out in plots A, B, C, D and E, which were divided into 6×6 subsites, with each one spanning a 120×120 m2 plot. Soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring and the mean soil temperature from 0-5cm by the probe thermometer were measured in A, B and C; the soil temperature, soil moisture, the loss tangent, soil conductivity, the real part and the imaginary part of soil complex permittivity by the POGO soil sensor, and the mean soil temperature from 0-5cm by the probe thermometer in D and E. Data were archived in Excel file. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.

0 2019-09-12

WATER: Dataset of ground truth measurements synchronizing with Envisat ASAR in the Biandukou foci experimental area (Mar. 14, 2008)

The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in C1, W2 and B2 of the Biandukou foci experimental area on Mar. 14, 2008, from 23:30 on 14 to 1:00 on 15, to be specific. The ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 23:21 BJT. The wheat stubble land, the deep plowed land and the rape stubble land were chosen for measurements. (1) The surface radiative temperature and the physical temperature were measured by the handheld infrared thermometer. Besides, the land cover type was also recorded. The data can be opened by Microsoft Office. (2) The gravimetric soil moisture (samples from 0-1cm, 1-3cm, 3-5cm, 5-10cm and 10-20cm) was measured by the microwave drying method. (3) The frost depth by the chopstick and the ruler. The soil was considered frozen when it was hard and with ice crystal. The data can be opened by Microsoft Office. Four data files were included, ASAR data, C1, W2 and B2 data.

0 2019-09-12

WATER: Dataset of ground truth measurements synchronizing with Envisat ASAR in the Biandukou foci experimental area during the pre-observation period (Oct. 18, 2007)

The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in No. 1 and 2 quadrates of the Biandukou foci experimental area on Oct. 18, 2007, during the pre-observation period. The ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:17 BJT. Both the quadrates were divided into 3×3 subsites, with each one spanning a 30×30 m2 plot. 25 sampling points were chosen, including centers and corners. Simultaneous with the satellite overpass, numerous ground data were collected: the soil temperature , volumetric soil moisture (cm^3/cm^3), soil salinity (s/m), soil conductivity (s/m) by the Hydra probe, the surface radiative temperature by the handheld infrared thermometer, gravimetric soil moisture, volumetric soil moisture, and soil bulk density by drying soil samples from the cutting ring (100cm^3). Meanwhile, vegetation parameters as height, coverage and water content were also observed. Those provide reliable ground data for the development and validation of soil moisture, soil freeze/thaw algorithms and the forward model from active remote sensing approaches.

0 2019-09-12