Soil observation and leaf area index and aboveground biomass of maize sampling points in Yingke Daman area of Heihe River Basin (2012)

The experimental data of Yingke Daman in Heihe River Basin is supported by the key fund project of Heihe River plan, "eco hydrological effect of agricultural water saving in Heihe River Basin and multi-scale water use efficiency evaluation". Including: soil bulk density, soil water content, soil texture, corn sample biomass, cross-section flow, etc Data Description: 1. Sampling location of Lai and aboveground biomass: Yingke irrigation district; sampling time: May 2012 to September 2012; Lai and aboveground biomass of maize were measured by canopy analyzer (lp-80), and aboveground biomass was measured by sampling drying method; sample number: 16. 2. Soil texture: Sampling location: Yingke irrigation district and Shiqiao Wudou Er Nongqu farmland in Yingke irrigation district; soil sampling depth is 140 cm, sampling levels are 0-20 cm every 10 cm, 20-80 cm every 20 cm, 80-140 cm every 30 cm; sampling time: 2012; measurement method: laboratory laser particle size analyzer; sample number: 38. 3. Soil bulk density: Sampling location: Yingke irrigation district and Daman irrigation district; sampling depth of soil bulk density is 100 cm, sampling levels are 0-50 cm and 50-100 cm respectively; sampling time: 2012; measurement method: ring knife method; number of sample points: 34. 4. Soil moisture content: this data is part of the monitoring content of hydrological elements in Yingke irrigation district. The specific sampling location is: Shiqiao Wudou Er Nongqu farmland in Yingke Irrigation District, planting corn for seed production; soil moisture sampling depth is 140 cm, sampling levels are 0-20 cm every 10 cm, 20-80 cm every 20 cm, 80-140 cm every 30 cm Methods: soil drying method and TDR measurement; sample number: 17. 5. Cross section flow: Sampling location: the farmland of Wudou Er Nong canal in Shiqiao, Yingke irrigation district; measure the flow velocity, water level and water temperature of different canal system sections during each irrigation, record the time and calculated flow, monitor once every 3 hours until the end of irrigation; sampling time: 2012.5-2012.9; measurement method: Doppler ultrasonic flow velocity meter (hoh-l-01, Measurement times: Yingke irrigation data of four times.

0 2020-07-30

Monitoring data of river section flow and soil and groundwater temperature in hulugou small watershed (July September 2014-2015)

The data includes the discharge data of the outlet river of No.2 catchment area of hulugou small watershed from July 24 to September 11, 2014 / 2015. Sampling location: the coordinates of river flow monitoring section are located at the outlet of No. 2 catchment area, near the red wall, with coordinates of 99 ° 52 ′ 58.40 ″ E and 38 ° 14 ′ 36.85 ″ n. The soil temperature monitoring depth in hulugou is 20cm, 50cm, 100cm, 200cm and 300cm. The monitoring depth of groundwater temperature is 10m. The observation frequency is 1 time / 1 hour. The time range of observation data is from May 13, 2015 to September 5, 2015. Sampling location: the soil temperature monitoring point in hulugou small watershed is located in the middle of the Delta, with the geographic coordinates of 99 ° 52 ′ 45.38 ″ E and 38 ° 15 ′ 21.27 ″ n.

0 2020-07-30

Doc, DIC and isotopic values of river water and groundwater (including spring water) in hulugou small watershed of Heihe River (July September 2014)

The data include the collection of elements and isotopes of river water and groundwater (including spring water) in hulugou small watershed of Heihe River. Sampling location: (1) There are two river water sampling points, one of which is located at the outlet weir of hulugou small watershed in the upper reaches of Heihe River, with longitude and latitude of 99 ° 52 ′ 47.7 ″ E and 38 ° 16 ′ 11 ″ n. The second sampling point is located at the outlet of hulugou area II in the upper reaches of Heihe River, with longitude and latitude of 99 ° 52 ′ 58.40 ″ E and 38 ° 14 ′ 36.85 ″ n. (2) The sampling points of groundwater spring and well water are located at 20m to the east of the drainage basin outlet, with longitude and latitude of 99 ° 52 ′ 50.9 ″ E and 38 ° 16 ′ 11.44 ″ n. The well water sampling point is located near the intersection of East and West Branch ditches, with longitude and latitude of 99 ° 52 ′ 45.38 ″ E and 38 ° 15 ′ 21.27 ″ n. Data Description: 1. Doc and DIC values of river water and groundwater at the outlet of hulugou small watershed from July to September 2014 were analyzed. The DOC and DIC values of the samples were tested by oiaurora 1030w TOC instrument, and the detection range was 2ppb c-30000ppm C. 2. From July to September 2014, the δ D and δ 18O values of precipitation, river water and groundwater in hulugou small watershed were measured by Picaro l2130-i ultra-high precision liquid water and water vapor isotope analyzer. The results were expressed by δ values relative to the international standard material v-smow, with the measurement accuracy of 0.038 ‰ and 0.011 ‰ respectively. 3. Doc values of river water and soil water at the outlet of hulugou small watershed from May to September 2013 were determined by analytikjena multi n / C 3100 total nitrogen and total carbon tester. 4. Doc and DIC values of river water and groundwater at the outlet of hulugou small watershed from July to September 2014 were measured by oiaurora 1030w TOC instrument, and the detection range was 2ppb c-30000ppm C.

0 2020-07-30

Modeling ecohydrological processes and spatial patterns in the Upstream of Heihe River Basin (2000-2012) V2.0

The output data of the distributed eco-hydrological model (GBEHM) of the upper reaches of the black river include the spatial distribution data series of 1-km grid. Region: upper reaches of heihe river (yingxiaoxia), time resolution: month scale, spatial resolution: 1km, time period: 2000-2012. The data include evapotranspiration, runoff depth and soil volumetric water content (0-100cm). All data is in ASCII format. See basan.asc file in the reference directory for the basin space range. The projection parameter of the model result is Sphere_ARC_INFO_Lambert_Azimuthal_Equal_Area.

0 2020-07-30

Spatial distribution data of soil bulk density, irrigation experiment and field water holding capacity in Linze Pingchuan irrigation area of Heihe River Basin (2012)

In the transition zone from Heihe River to desert oasis in Pingchuan oasis of Linze, soil texture, bulk density, field capacity, saturated water capacity, soil organic matter, total nitrogen and inorganic carbon content were studied. PH value, electrical conductivity, total carbon, SiC and C / N were monitored to determine the physical and chemical properties of 0-20cm topsoil and the soil particle size composition of 0-20cm and 20-80cm soil layers. According to the soil properties of five different soil in cotton field, cotton irrigation experiment was carried out: irrigation amount, seed cotton yield, straw parameters, lint percentage, coat index, seed index, single boll weight, flower rate before frost, unit boll number, single boll weight, irrigation water productivity, etc.

0 2020-07-30

Historical documents of water allocation in Heihe River Basin

Hydrological data of Heihe River: investigation data of water diversion process of Heihe River. Methods: field investigation, interview, data collection and electronization; Content overview: this data includes the documents, documents and research reports obtained from the investigation of the water diversion process of Heihe River by Tsinghua University, mainly including the interview records of Mr. Zhou Kan, the party who made the water diversion plan. Time and space: 1950-2010; Heihe River Basin

0 2020-07-28

Data of industrial structure change and water use evolution trend of social and economic development in Heihe River Basin

Data of industrial structure change and water use evolution trend of social and economic development in Heihe River Basin

0 2020-07-28

Simulation results of eco hydrological model in the middle and lower reaches of Heihe river v1.0 (2001-2012)

This project use distributed HEIFLOW Ecological hydrology model (Hydrological - Ecological Integrated watershed - scale FLOW model) of heihe river middle and lower reaches of the eco Hydrological process simulation.The model USES the dynamic land use function, and adopts the land use data of the three phases of 2000, 2007 and 2011 provided by hu xiaoli et al. The space-time range and accuracy of simulation are as follows: Simulation period: 2000-2012, of which 2000 is the model warm-up period Analog step size: day by day Simulation space range: the middle and lower reaches of heihe river, model area 90589 square kilometers Spatial accuracy of the simulation: 1km×1km grid was used on both the surface and underground, and there were 90589 hydrological response units on the surface.Underground is divided into 5 layers, each layer 90589 mobile grid The data set of HEIFLOW model simulation results includes the following variables: (1) precipitation (unit: mm/month) (2) observed values of main outbound runoff in the upper reaches of heihe river (unit: m3 / s) (3) evapotranspiration (unit: mm/month) (4) soil infiltration amount (unit: mm/month) (5) surface yield flow (unit: mm/month) (6) shallow groundwater head (unit: m) (7) groundwater evaporation (unit: m3 / month) (8) supply of shallow groundwater (unit: m3 / month) (9) groundwater exposure (unit: m3 / month) (10) river-groundwater exchange (unit: m3 / month) (11) simulated river flow value of four hydrological stations of heihe main stream (gaoya, zhengyi gorge, senmaying, langxin mountain) (unit: cubic meter/second) The first two variables above are model-driven data, and the rest are model simulation quantities.The time range of all variables is 2001-2012, and the time scale is month.The spatial distributed data precision is 1km×1km, and the data format is tif. In the above variables, if the negative value is encountered, it represents the groundwater excretion (such as groundwater evaporation, groundwater exposure, groundwater recharge channel, etc.).If groundwater depth is required, the groundwater head data can be subtracted from the surface elevation data of the model. In some areas, the groundwater head may be higher than the surface, indicating the presence of groundwater exposure. In addition, the dataset provides: Middle and downstream model modeling scope (format:.shp) Surface elevation of the middle and downstream model (in the format of. Tif) All the above data are in the frame of WGS_1984_UTM_Zone_47N. Take heiflow_v1_et_2001m01.tif as an example to illustrate the naming rules of data files: HEIFLOW: model name V1: data set version 1.0 ET: variable name 2001M01: January 2000, where M represents month

0 2020-07-28

The irrigating area and the distribution of the main canal and lateral canal in Heihe River Basin

The distribution map of irrigation area and main and branch canals in Heihe River basin includes the main irrigation area and the distribution of all main and branch canals in Heihe River Basin. The irrigation area mainly includes Luocheng irrigation area, Youlian irrigation area, Liuba irrigation area, Pingchuan irrigation area, liaoquan irrigation area, Liyuan River irrigation area, yannuan irrigation area, Banqiao irrigation area, Shahe irrigation area, Xijun irrigation area, Yingke irrigation area, Daman irrigation area, Maying River irrigation area, shangsan irrigation area, Xinba irrigation area and Hongyazi irrigation area. The distribution map of main and branch canals includes all the main canals and branch canals of these 16 irrigation areas.

0 2020-07-28

Data of annual lake area in the endorheic basin of the Qinghai-Tibet Plateau from 1986 to 2019

This data provides the annual lake area of ​​582 lakes with an area greater than 1 km2 in the enorheic basin of the Qinghai-Tibet Plateau from 1986 to 2019. First, based on JRC and SRTM DEM data, 582 lakes are identified in the area that are larger than 1 km2. All Landsat 5/7/8 remote sensing images covering a lake are used to make annual composite images. NDWI index and Ostu algorithm were used to dynamically segment lakes, and the size of each lake from 1986 to 2019 is then calculated. This study is based on the Landsat satellite remote sensing images, and using Google Earth Engine allowed us to process all Landsat images available to create the most complete annual lake area data set of more than 1 km2 in the Qinghai-Tibet Plateau area; A set of lake area automatic extraction algorithms were developed to calculate of the area of ​​a lake for many years; This data is of great significance for the analysis of lake area dynamics and water balance in the Qinghai-Tibet Plateau region, as well as the study of the climate change of the Qinghai-Tibet Plateau lake.

0 2020-07-14