Intensity data of human activities on the plateau in 2012-2017

According to the characteristics of the Qinghai Tibet Plateau and the principles of scientificity, systematization, integrity, operability, measurability, conciseness and independence, the human activity intensity evaluation index system suitable for the Qinghai Tibet Plateau has been constructed, which mainly includes the main human activities such as agricultural and animal husbandry activities, industrial and mining development, urbanization development, tourism activities, major ecological engineering construction, pollutant discharge, etc, On the basis of remote sensing data, ground observation data, meteorological data and social statistical yearbook data, the positive and negative effects of human activities are quantitatively evaluated by AHP, and the intensity and change characteristics of human activities are comprehensively evaluated. The data can not only help to enhance the understanding of the role of human activities in the vegetation change in the sensitive areas of global change, but also provide theoretical basis for the sustainable development of social economy in the Qinghai Tibet Plateau, and provide scientific basis for protecting the ecological environment of the plateau and building a national ecological security barrier.

0 2021-03-29

Dataset of sustainable livelihood: Demographic, human capital, and employment (2018)

The data includes the gender, age, social security, education level, labor force and employment status of household members in 1280 families at domestic and abroad, which is used to support the analysis of human capital and livelihood Strategy in sustainable livelihoods. The field survey data is collected by the research group. Before collecting the data, the research group and the invited experts conducted a pretest to improve the questionnaire; before the formal survey, the members participating in the data collection were strictly trained; during the formal survey, each questionnaire could be filed after three times of inspection. The data is of great value to understand the human capital, livelihood strategies and demographic characteristics of farmers in the vulnerable areas of environment and economy, and is an important supplement to the national and macro data in this area.

0 2021-02-22

Dataset of population, agriculture and animal husbandry of the Qinghai-Tibet Plateau in the past 100 years

The data set is mainly included the population, arable land and animal husbandry data of Qinghai Province and Tibet Autonomous Region in the past 100 years. The data mainly comes from historical documents and modern statistics. The data quality is more reliable. It mainly provides arguments for the majority of researchers in the development of agriculture and animal husbandry on the Qinghai-Tibet Plateau.

0 2021-02-22

Refined spatial distribution data set of population in hanbantota port area (HRSLv1.2)

The refined population spatial distribution data set of Hambantota port area is generated by reanalysis based on hrsl data of Sri Lanka. Hrsl data provides an estimate of the population distribution in 2015 at a resolution of 1 arcsec (about 30 meters). The latest census information and built-up area information based on satellite images are used in hrsl data. This data set is based on hrsl data. Firstly, the boundary of buildings is extracted from the 0.5m resolution remote sensing image by computer vision technology, and the building types (high-rise buildings, medium and low rise buildings, bungalows, etc.) are determined by combining with manual visual interpretation and field sampling. The population distribution area mask is constructed in the building area, and the 10 meter grid is used as the analysis unit to calculate the population distribution in the unit According to the proportion of different building types, the proportion of main land use types, building density, distance from road and other related indicators, the average density of building type consistent area is calculated from hrsl data, and the corresponding population density of each building is obtained by machine learning method. Then, the population data in the area is allocated to the corresponding unit by proportional allocation method, and the 10 meter resolution is obtained Population distribution products. The data is distributed in the form of GeoTIFF files. Population GeoTIFF represents population estimates (in person) and provides detailed estimates for population, infrastructure and Sustainability Studies in the humanitarian field.

0 2021-01-29

500 m grid data of grassland degradation assessment in agricultural and pastoral areas of the Qinghai-Tibet Plateau in 2015

The Grassland Degradation Assessment Dataset in agricultural and pastoral areas of the Qinghai-Tibet Plateau (QTP) is a data set based on the 500m Global Land Degradation Assessment Data (2015), which is evaluated according to the degree of grassland degradation or improvement. In this dataset, the grassland degradation of the QTP was divided into two evaluation systems. At the first level, the grassland degradation assessment was divided into 3 types, including no change type, improvement type and degradation type. At the second level, the grassland degradation assessment on the QTP was divided into 9 types, among which the type with no change was class 1, represented by 0. There were 4 types of improvement: slight improvement (3), relatively significant improvement (6), significant improvement (9) and extremely significant improvement (12). The degradation types can be divided into 4 categories: slight degradation (-3), relatively obvious degradation (-6), obvious degradation (-9) and extremely obvious degradation (-12). This dataset covers all grassland areas on the QTP with a spatial resolution of 500m and a time of 2015. The projection coordinate system is D_Krasovsky_1940_Albers. The data are stored in TIFF format, named “grassdegrad”, and the data volume is 94.76 MB. The data were saved in compressed file format, named “500 m grid data of grassland degradation assessment in agricultural and pastoral areas of the Qinghai-Tibet Plateau in 2015”. The file volume is 2.54 MB. The data can be opened by ArcGIS, QGIS, ENVI, and ERDAS software, which can provide reference for grassland ecosystem management and restoration on the QTP.

0 2021-01-12

Data on population proportion of major ethnic groups in 2017

One belt, one road, 64 countries in 2017 accounted for the total population of the country. Data source: organized by the author. Data quality is good. The data can have one broad prospect in one belt, one road, and the other is comprehensive research on economy, society, population and governance structure. "One belt, one road" covers Asia Pacific, Eurasia, Middle East, Africa, etc., including 65 countries, with a total population of over 4 billion 400 million, accounting for 63% of the world's population. One belt, one road, one belt, one road, one belt, one road, one country, one country, and one country.

0 2020-08-03

64 religious ratio of One Belt And One Road route (2017)

One belt, one road, in 2017, the proportion of religious population in 64 countries is the total population. Data source: organized by the author. Data quality is good. The data can have one broad prospect in one belt, one road, and the other is comprehensive research on economy, society, population and governance structure. "One belt, one road" covers Asia Pacific, Eurasia, Middle East, Africa, etc., including 65 countries, with a total population of over 4 billion 400 million, accounting for 63% of the world's population. One belt, one road, one belt, one road, one belt, one road, one area, and the other two. The first one is to make contributions to the systematic research and comprehensive application of the whole area.

0 2020-06-11

The population dataset of the Heihe River Basin (2000-2009)

This set of data mainly includes the demographic data of 12 counties in 6 prefecture-level cities of Qinghai, Gansu and Inner Mongolia in Heihe River Basin, covering the time period of 2000-2009. The data source is the local statistical yearbook, which mainly includes: Statistical Bureau of Suzhou District. Statistical Yearbook of Suzhou. 2004-2009; Yumen Statistical Bureau. Yumen Statistical Yearbook. 2000-2008; Jinta County Statistical Bureau. Jinta County Statistical Yearbook. 2004-2009; Gaotai Statistical Bureau. Gaotai Statistical Yearbook. 2000-2007; Shandan County Statistical Bureau. Shandan County Statistical Yearbook. 2000-2009; Sunan Yugur Statistical Bureau. Statistical Yearbook of Sunan Yugur Autonomous County. 2004-2009; Minle County Statistical Bureau. Minle County Statistical Yearbook. 2004-2009; Shandan County Statistical Bureau. Shandan County Statistical Yearbook. 2000-2009; Linze County Statistical Bureau. Linze County Statistical Yearbook. 2000-2009; Ejin Banner Statistical Bureau. Ejin Banner Statistical Yearbook. 1990-2005; Qilian County Statistical Bureau. Qilian County National Economic Statistics. 2004-2009; Part of the data of Zhangye City comes from the basic social and economic situation of townships of Zhangye City in 2005. Data of Jiayuguan City is derived from the CNKI statistical data database of China National Knowledge Infrastructure, and only contains some county-level data. Data Content Description: The data mainly includes three population indicators of 12 counties in the basin, including Ganzhou District, Gaotai County, Shandan County, Minle County, Linze County, Sunan Yugur Autonomous County, Jinta County, Sunzhou District and Yumen City, Jiayuguan City, Qilian County, and Ejin Banner. The population indicators are permanent population, agricultural population and non-agricultural population at the end of the year. It is divided into two levels: county level and township level. The statistics currently available are: County level: Ejina Banner: 2006-2009: resident population, agricultural population, non-agricultural population at the end of each year Ganzhou District: 2009: agricultural population, non-agricultural population of the year; Gaotai County: 2009: agricultural population, non-agricultural population of the year; Sunan: 2000-2009: permanent population, agricultural population, non-agricultural population at the end of each year; Minle County: 2009: permanent population, agricultural population, non-agricultural population at the end of the year; Linze: 2009: permanent population, agricultural population, non-agricultural population at the end of the year; Yumen City: 2000-2005: permanent population, agricultural population, non-agricultural population at the end of each year; Township level: Ejin Banner: 2000-2005: permanent population, agricultural population, non-agricultural population at the end of the year; Ganzhou District: 2000-2008: permanent population, agricultural population, non-agricultural population at the end of the year; 2009: resident population at the end of the year; Gaotai County: 2000-2004, 2006, 2007: permanent population, agricultural population, non-agricultural population at the end of the year; 2009: resident population at the end of the year; Shandan County: 2000-2007: permanent population, agricultural population, non-agricultural population at the end of the year; 2009: resident population at the end of the year; Minle County: 2000-2008: permanent population, agricultural population, non-agricultural population at the end of the year; Jinta County: 2004-2009: permanent population, agricultural population, non-agricultural population at the end of the year; Yumen City: 2006-2008: permanent population, agricultural population, non-agricultural population at the end of the year; Suzhou District 2004-2009: permanent population, agricultural population, non-agricultural population at the end of the year; Qilian County: 2004-2009: permanent population, agricultural population, non-agricultural population at the end of the year; Permanent population at the end of the year, agricultural population, non-agricultural population County level township level county level township level county level township level Ejin Banner:2006-2009 2000-2005 2006-2009 2000-2005 2006-2009 2000-2005 Ganzhou District 2000-2009 2009 2000-2008 2009 2000-2008 Gaotai County 2000-2004、 2006、2007、2009 2009 2000-2004、 2006、2007 2009 2000-2004、 2006、2007 Shandan County 2000-2007、2009 2000-2007 2000-2007 Sunan County 2000-2009 2000-2009 2000-2009 Minle County 2009 2000-2008 2009 2000-2008 2009 2000-2008 Linze County 2009 2009 2009 Jinta County 2004-2009 2004-2009 2004-2009 Sunzhou District 2004-2009 2004-2009 2004-2009 Qilian County 2004-2009 2004-2009 2004-2009 Yumen City 2000-2005 2006-2008 2000-2005 2006-2008 2000-2005 2006-2008

0 2020-06-08

Geo risk index along the " Belt and Road Initiative" (2017)

"One belt, one road" along the lines of risk rating, credit risk rating and Moodie's national sovereignty rating reflects the structure of sovereign risk in every country. The rating of Moodie's national sovereignty is from the highest Aaa to the lowest C level, and there are twenty-one levels. Data source: organized by the author. Data quality is good. The rating level is divided into two parts, including investment level and speculation level. AAA level is the highest, which is the sovereign rating of excellent level. It means the highest credit quality and the lowest credit risk. The interest payment has sufficient guarantee and the principal is safe. The factors that guarantee the repayment of principal and interest are predictable even if they change. The distribution position is stable. C is the lowest rating, indicating that it cannot be used for real investment.

0 2020-06-06

The urbanization rate data of each state in Uzbekistan (2000-2017)

The data set records the urbanization rate data of each state of Uzbekistan from 2000 to 2017.The data is from Uzbekistan's national statistics bureau. Urbanization is a concept with broad implications.In a narrow sense, it generally refers to the urbanization of population, which refers to the increase of the number of cities and the expansion of the urban scale, and the process of population aggregation to cities in a certain period.Urbanization rate refers to the proportion of permanent urban residents in a region in the total permanent resident population.The name of the original index is Russian, which has been translated and edited.The accuracy of the official data can provide basic data basis for the study of the socio-economic development of central Asian countries.

0 2020-05-29