Field LAI dataset in the Heihe River Basin (2012)

The ground sample data was collected by LAI-2000 canopy analyzer, and the collection area was located in Dayekou, Wuxing Village (2012) and other areas. The main measure of vegetation is corn. The LAI value of the corn was obtained using the LAI2000, and the observation was repeated twice in a pattern of “one up and four down”. The leaf area of each leaf of the corn plant was obtained using CD202, and a total of three corns were collected.

0 2020-09-15

MODIS Lai data of 34 key nodes in Pan third pole region (2002-2016)

Leaf area index (leaf area index), also known as leaf area coefficient, refers to the multiple of total plant leaf area in land area per unit land area, which is a better dynamic index to reflect the size of crop population. Leaf area index (LAI) is an important structural parameter of forest ecosystem. It represents the density of leaves and canopy structure characteristics, and affects the physiological and biochemical processes such as photosynthesis, respiration and transpiration in the canopy. It is a key parameter to describe the material and energy exchange between soil, vegetation and atmosphere, and is also an important variable for estimating various ecological processes and functions. Based on MODIS leaf area index data from 2000 to 2016, the mcd15a3h product data of Pan third pole key node area were trimmed, and the 4-day leaf area index data of key node area from 2002 to 2016 were obtained. Data projection: sinusoidal projection The data area is 34 key nodes of Pan third pole (Abbas, Astana, Colombo, Gwadar, Mengba, Teheran, Vientiane, etc.).

0 2020-08-24

WATER: Dataset of forest structure parameter survey at the temporary forest sampling plot in the Dayekou watershed foci experimental area (2008)

The forest hydrology experimental area of Heihe River integrated remote sensing experiment includes the dense observation area of Dayekou basin and the dense observation area of Pailugou basin. Due to the concentrated distribution of the fixed sample plots in the drainage ditch basin, these sample plots lack of representativeness to the forest of the whole dayokou basin, so in June 2008, 43 temporary forest sample plots were set up in the whole dayokou basin. The data set is the ground observation data of the 43 temporary plots. In addition to the measurement and recording of stand status and site factors, Lai was also observed. The instruments used to measure each wood in the sample plot are mainly tape, DBH, flower pole, tree measuring instrument and compass. The DBH, tree height, height under branch, crown width in cross slope direction, crown width along slope direction and single tree growth were measured for each tree. WGS84 latitude and longitude coordinates of the center point of the sample plot were measured with different hand-held GPS, and the positioning error was about 5-30m. Other observation factors include: Forest Farm, slope direction, slope position, slope, soil thickness, canopy density, etc. The implementation time of these temporary sample plots is from 2 to 30 June 2008. The data set can provide ground data for the development of remote sensing inversion algorithm of forest structure parameters.

0 2020-08-20

Field LAI dataset in the Heihe River basin (2011)

The dataset is Lai data of ground sample points in Heihe River Basin, collected by LAI-2000 canopy analyzer. The collection area is located in Zhangye rural demonstration base, Ejina Banner, Jiuquan Satellite Center (2011) and other areas. The main measured vegetation is corn. The Lai value of maize was obtained by using lai2000, and the observation was repeated twice in the mode of one up four down. Cd202 was used to obtain the leaf area of each leaf of maize plant, and three maize plants were collected.

0 2020-07-30

Soil observation and leaf area index and aboveground biomass of maize sampling points in Yingke Daman area of Heihe River Basin (2012)

The experimental data of Yingke Daman in Heihe River Basin is supported by the key fund project of Heihe River plan, "eco hydrological effect of agricultural water saving in Heihe River Basin and multi-scale water use efficiency evaluation". Including: soil bulk density, soil water content, soil texture, corn sample biomass, cross-section flow, etc Data Description: 1. Sampling location of Lai and aboveground biomass: Yingke irrigation district; sampling time: May 2012 to September 2012; Lai and aboveground biomass of maize were measured by canopy analyzer (lp-80), and aboveground biomass was measured by sampling drying method; sample number: 16. 2. Soil texture: Sampling location: Yingke irrigation district and Shiqiao Wudou Er Nongqu farmland in Yingke irrigation district; soil sampling depth is 140 cm, sampling levels are 0-20 cm every 10 cm, 20-80 cm every 20 cm, 80-140 cm every 30 cm; sampling time: 2012; measurement method: laboratory laser particle size analyzer; sample number: 38. 3. Soil bulk density: Sampling location: Yingke irrigation district and Daman irrigation district; sampling depth of soil bulk density is 100 cm, sampling levels are 0-50 cm and 50-100 cm respectively; sampling time: 2012; measurement method: ring knife method; number of sample points: 34. 4. Soil moisture content: this data is part of the monitoring content of hydrological elements in Yingke irrigation district. The specific sampling location is: Shiqiao Wudou Er Nongqu farmland in Yingke Irrigation District, planting corn for seed production; soil moisture sampling depth is 140 cm, sampling levels are 0-20 cm every 10 cm, 20-80 cm every 20 cm, 80-140 cm every 30 cm Methods: soil drying method and TDR measurement; sample number: 17. 5. Cross section flow: Sampling location: the farmland of Wudou Er Nong canal in Shiqiao, Yingke irrigation district; measure the flow velocity, water level and water temperature of different canal system sections during each irrigation, record the time and calculated flow, monitor once every 3 hours until the end of irrigation; sampling time: 2012.5-2012.9; measurement method: Doppler ultrasonic flow velocity meter (hoh-l-01, Measurement times: Yingke irrigation data of four times.

0 2020-07-30

Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (Leaf area index of Daman Superstation, 2018)

This dataset contains the LAI measurements from the Daman superstation in the middle reaches of the Heihe integrated observatory network from June 11 to September 18 in 2018. The site (100.372° E, 38.856°N) was located in the maize surface, near Zhangye city in Gansu Province. The elevation is 1556 m. There are 3 observation samples, each of which is about 30m×30m in size, and the latitude and longitude ranges are (100.373297°E~100.374205°E, 38.857871°N~38.858390°N), (100.373918°E~100.373897°E, 38.854025°). N~38.854941°N), (100.368007°E~100.369044°E, 38.850678°N~38.851580°N). Five sub-canopy nodes and one above-canopy node are arranged in each sample. The LAI data is obtained from LAINet measurements following four steps: (1) the raw data is light quantum (level 0); (2) the daily LAI can be obtained using the software LAInet (level 1); (3) the invalid and null values are screened and using the 7 days moving averaged method to obtain the processed LAI (level 2); (4) for the multi LAINet nodes observation, the averaged LAI of the nodes area is the final LAI (level 3). The released data are the post processed LAI products and stored using *.xls format. For more information, please refer to Liu et al. (2018) (for sites information), Qu et al. (2014) for data processing) in the Citation section.

0 2020-07-25

Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (leaf area index of Sidaoqiao, 2018)

This dataset contains the LAI measurements from the Sidaoqiao in the downstream of the Heihe integrated observatory network from June 16 to October 18 in 2018. The site was located in Ejina Banner in Inner Mongolia Autonomous Region. The elevation is 870 m. There are 2 observation samples, around Sidaoqiao superstation (101.1374E, 42.0012N) and Mixed forest station (101.1335E, 41.9903N), each of which is about 30m×30m in size. Five sub-canopy nodes and one above-canopy node are arranged in each sample. The LAI data is obtained from LAINet measurements following four steps: (1) the raw data is light quantum (level 0); (2) the daily LAI can be obtained using the software LAInet (level 1); (3) the invalid and null values are screened and using the 7 days moving averaged method to obtain the processed LAI (level 2); (4) for the multi LAINet nodes observation, the averaged LAI of the nodes area is the final LAI (level 3). The released data are the post processed LAI products and stored using *.xls format. For more information, please refer to Liu et al. (2018) (for sites information), Qu et al. (2014) for data processing) in the Citation section.

0 2020-07-25

LAI dataset of remote sensing for ecological assets assessment in Tibet Plateau (2000-2017)

The basic data set of remote sensing for ecological assets assessment of the Qinghai-Tibet Plateau includes the annual Fraction Vegetation Coverage (FVC), Net Primary Productivity (NPP) and Leaf Area Index (LAI) of the Qinghai-Tibet Plateau since 2000, and other ecological parameters based on remote sensing inversion. The improved LAI estimation method based on TSF filter and scale down method are used to improve the LAI data.

0 2020-06-02

202024test test data 202024test test data 202024Test test data 202024test test data 202024test test data 202024test test data 202024test test data 202024test test data 202024test test data 202024test test data 202024test test data 202024test test data 202024test test data

0 2020-03-27

Heihe 30m FAPAR production (2012)

Image format: tif Image size: about 925M per scene Time range: may-october 2012 Time resolution: month Spatial resolution: 30m The algorithm firstly adopts the canopy BRDF model and presents the canopy reflectivity as a function of a series of parameters such as FAPAR, wavelength, reflectance of soil and leaves, aggregation index, incidence and observation Angle.The parameter table is established for several key parameters as the input of inversion.Then input the pre-processed surface reflectance data and land cover data, and invert LAI/FAPAR products by look-up table (LUT) method. See references for detailed algorithm.

0 2020-03-15