Drainage networks of Lancang-Mekong river basin (flow direction, flow accumulation, river networks)

1) Data content (including elements and significance) This data set contains information of flow direction, accumulation of vector river network of Lancang Mekong River Basin. <br><br> 2) Data sources and processing methods In this data set, the remote sensing stream buring (RSSB) method (Wang et al., 2021) is adopted, and the high-precision elevation model MERIT-DEM and Sentinel-2 optical imagery are fused. <br><br> 3) Data quality description Validations show that this data set has high spatial accuracy (Wang et al, 2021). <br><br> 4) Data application achievements and Prospects This data set provides basic information of river networks, which can be used for hydrological model, land surface model, earth system model, as well as for mapping and spatial statistical analysis.

0 2021-05-06

The boundaries of the source regions in Sanjiangyuan region (2018)

The data set contains the boundaries of the three source regions of the Yellow River, the Yangtze River and the Lancang River, the boundary of the whole Sanjiangyuan region and the boundaries of the counties within the basin. The observation projects include the boundaries of the three source regions of the Yellow River, the Yangtze River and the Lancang River, the boundary of the whole Sanjiangyuan region and the boundaries of the counties within the basin.

0 2021-04-20

Administrative boundaries data at 1:1000 000 in the Sanjiangyuan region (2017)

This data is derived from the National Basic Geographic Information Resources Catalogue Service System, which provides 11 million national basic geographic databases free of charge by the National Basic Geographic Information Center in November 2017. We have spliced and cut the source of the three rivers as a whole, so as to facilitate the use of the study of the source area of the three rivers. This data set is composed of 1:1 million administrative boundary layers (BOUA) and administrative boundary line layers (BOUL) in Sanjiangyuan area. Names and definitions of BOUA attribute items: Attribute Item Description Fill in Example PAC Administrative Division Code 513230 NAME Name Rangtang County Names and definitions of BOUL attribute items: Attribute Item Description Fill in Example GB National Standard Classification Code 630200 The meaning of BOUL attribute items: Attribute Item Code Description GB 630200 Provincial Boundary GB 640200 District, Municipal and State Administrative Region GB 650201 County administrative boundaries (determined)

0 2021-04-19

Natural places names dataset at 1:1000 000 in Sanjiangyuan region (2017)

This data comes from the National Geographic Information Resources Catalogue Service System, which was provided free to the public by the National Basic Geographic Information Center in November 2017. We have spliced and cut the source of the three rivers as a whole, so as to facilitate the use of the study of the source area of the three rivers. The data trend is 2017. This data set is composed of 1:1 million natural place names (AANP) in Sanjiangyuan area, including traffic element names, memorial sites and historic sites, mountain names, river system names, marine geographical names, natural geographical names, etc. Natural Place Name Data (AANP) Attribute Item Names and Definitions: Attribute Item Description Fill in Example CLASS Toponymic Classification Code NAME in Chinese words PINYIN in Chinese Pinyin

0 2021-04-19

Dataset of town boundary in Sanjiangyuan region National Park (2015)

This dataset is the spatial distribution map of the marshes in the source area of the Yellow River near the Zaling Lake-Eling Lake, covering an area of about 21,000 square kilometers. The data set is classified by the Landsat 8 image through an expert decision tree and corrected by manual visual interpretation. The spatial resolution of the image is 30m, using the WGS 1984 UTM projected coordinate system, and the data format is grid format. The image is divided into five types of land, the land type 1 is “water body”, the land type 2 is “high-cover vegetation”, the land type 3 is “naked land”, and the land type 4 is “low-cover vegetation”, and the land type 5 is For "marsh", low-coverage vegetation and high-coverage vegetation are distinguished by vegetation coverage. The threshold is 0.1 to 0.4 for low-cover vegetation and 0.4 to 1 for high-cover vegetation.

0 2021-04-19

Daily 1-km all-weather land surface temperature dataset for Western China (TRIMS LST-TP; 2000-2019) V2

The Qinghai Tibet Plateau is a sensitive region of global climate change. Land surface temperature (LST), as the main parameter of land surface energy balance, characterizes the degree of energy and water exchange between land and atmosphere, and is widely used in the research of meteorology, climate, hydrology, ecology and other fields. In order to study the land atmosphere interaction over the Qinghai Tibet Plateau, it is urgent to develop an all-weather land surface temperature data set with long time series and high spatial-temporal resolution. However, due to the frequent cloud coverage in this region, the use of existing satellite thermal infrared remote sensing land surface temperature data sets is greatly limited. Compared with the daily 1 km spatial resolution all-weather land surface temperature data set (2003-2018) V1 in Western China released in 2019, this data set (V2) adopts a new generation method, namely satellite thermal infrared remote sensing reanalysis data integration method (RTM) based on the new land surface temperature time decomposition model. The main input data of the method are Aqua MODIS LST products and GLDAS data, and the auxiliary data include vegetation index and surface albedo provided by satellite remote sensing. This method makes full use of the high frequency and low frequency components of land surface temperature and the spatial correlation of land surface temperature provided by satellite thermal infrared remote sensing and reanalysis data. The evaluation results show that the land surface temperature data set has good image quality and accuracy, which is not only completely seamless in space, but also highly consistent with MODIS LST products widely used in the current academic circles in amplitude and spatial distribution. When MODIS LST was used as the reference value, the mean deviation (MBE) of the data set in daytime and nighttime was -0.28 K and -0.29 K respectively, and the standard deviation (STD) of the deviation was 1.25 K and 1.36 K respectively. The test results based on the measured data of six stations in the Qinghai Tibet Plateau and Heihe River Basin show that under clear sky conditions, the data set is highly consistent with the measured LST during the day / night, with R2 of 0.93 ~ 0.97 / 0.93 ~ 0.98; MBE of -0.42 ~ 0.25 K / - 0.35 ~ 0.19 K; RMSE of 1.03 ~ 2.28 K / 1.05 ~ 2.05 K; under non clear sky conditions, the MBE of the data set during the day / night is -0.55 ~ 1.42 K / - 0.46 ~ 1.27 K. The RMSE was 2.24-3.87 K / 2.03-3.62 K. Compared with the V1 version of the data, the two kinds of all-weather land surface temperature show the characteristics of seamless (i.e. no missing value) in the spatial dimension, and in most areas, the spatial distribution and amplitude of the two kinds of all-weather land surface temperature are highly consistent with MODIS land surface temperature. However, in the region where the brightness temperature of AMSR-E orbital gap is missing, the V1 version of land surface temperature has a significant systematic underestimation. The mass of trims land surface temperature is close to that of V1 version outside AMSR-E orbital gap, while the mass of trims is more reliable inside the orbital gap. Therefore, it is recommended that users use V2 version. The time span of this data set is from 2000 to 2019, and it will be updated continuously; the temporal resolution is twice daily (corresponding to the two transit times of aqua MODIS in the day and night respectively); the spatial resolution is 1 km. In order to facilitate the majority of colleagues to carry out targeted research around the Qinghai Tibet Plateau and its adjacent areas, and reduce the workload of data download and processing, the coverage of this dataset is limited to Western China and its surrounding areas (72 ° e-104 ° e, 20 ° n-45 ° n) with the Qinghai Tibet Plateau as the core. Therefore, this dataset is abbreviated as trims lst-tp (thermal and reality integrating medium resolution spatial seam LST – Tibetan Plateau) for user's convenience.

0 2021-04-14

1km grid data set of ecological vulnerability in agricultural and pastoral areas of Qinghai Tibet Plateau

Based on the vulnerability assessment framework of "exposure sensitivity adaptability", the vulnerability assessment index system of agricultural and pastoral areas in Qinghai Tibet Plateau was constructed. The index system data includes meteorological data, soil data, vegetation data, terrain data and socio-economic data, with a total of 12 data indicators, mainly from the national Qinghai Tibet Plateau scientific data center and the resource and environmental science data center of the Chinese Academy of Sciences. Based on the questionnaire survey of six experts in related fields, the weight of the indicators is determined by using the analytic hierarchy process (AHP). Finally, four 1km grid data are formed involving ecological exposure, sensitivity, adaptability and ecological vulnerability in the agricultural and pastoral areas of the Qinghai Tibet Plateau. The data can provide a reference for the identification of ecological vulnerable areas in the Qinghai Tibet Plateau.

0 2021-04-09

Grading map of agricultural suitability on the Tibet Plateau (2018)

This study takes the land resources in the Qinghai-Tibet Plateau as the evaluation object, and clarifies the current situation in the region suitable for agriculture, forestry, animal husbandry production and the quantity, quality and distribution of the reserve land resources. Through field investigations, collect relevant data from the study area, and combine relevant literature and expert experience to determine the evaluation factors (altitude, slope, annual precipitation, accumulated temperature, sunshine hours, soil effective depth, texture, erosion, vegetation type, NDVI). The grading and standardization are carried out, and the weights of each evaluation factor are determined by principal component analysis. The weighted index and model are used to determine the total score of the evaluation unit. Finally, the ArcGis natural discontinuity classification method is used to obtain the Qingshang Plateau. And the grades of farmland, forestry and grassland suitability drawings of the Qinghai-Tibet Plateau with a resolution of 90m were given. Finally, the results are verified and analyzed.

0 2021-04-09

County level statistics data of Tibetan Plateau (1980-2015)

The data set contains agricultural economic data of all counties and regions in the Tibetan Plateau in 1980-2015, and covering the total number of households and total population in rural areas, agricultural population, rural labor force, cultivated land, paddy field area, the dry land area, power of agricultural machinery, agricultural vehicles, mechanical ploughing area, irrigation area, consumption of chemical fertilizers electricity use, gross output value of agriculture, forestry, animal husbandry and fishery, the output of cattle, pig, sheep, meat, poultry, and fish, the sown area of grain, the output of grain, cotton, oil and all kinds of crops, and characteristic agricultural products and livestock production and other relevant data.The data came from the statistical yearbook of the provinces included in the Tibetan Plateau.The data are of good quality and can be used to analyze the socio-economic and agricultural development of qinghai-tibet plateau.

0 2021-04-09

The ASTER_GDEM dataset of the Tibetan Plateau (2011)

The ASTER Global Digital Elevation Model (ASTER GDEM) is a global digital elevation data product jointly released by the National Aeronautics and Space Administration of America (NASA) and the Ministry of Economy, Trade and Industry of Japan (METI). The DEM data were based on the observation results of NASA’s new generation of Earth observation satellite, TERRA, and generated from 1.3 million stereo image pairs collected by ASTER (Advanced Space borne Thermal Emission and Reflection Radio meter) sensors, covering more than 99% of the land surface of the Earth. These data were downloaded from the ASTER GDEM data distribution website. For the convenience of using the data, based on framing the ASTER GDEM data, we used Erdas software to splice and prepare the ASTER GDEM mosaic of the Tibetan Plateau. This data set contains three data files: ASTER_GDEM_TILES ASTERGDEM_MOSAIC_DEM ASTERGDEM_MOSAIC_NUM The ASTER GDEM data of the Tibetan Plateau have an accuracy of 30 meters, the raw data are in tif format, and the mosaic data are stored in the img format. The raw data of this data set were downloaded from the ASTERGDEM website and completely retained the original appearance of the data. ASTER GDEM was divided into several 1×1 degree data blocks during distribution. The distribution format was the zip compression format, and each compressed package included two files. The file naming format is as follows: ASTGTM_NxxEyyy_dem.tif ASTGTM_NxxEyyy_num.tif xx is the starting latitude, and yyy is the starting longitude. _dem.tif is the dem data file, and _num.tif is the data quality file. ASTER GDEM TILES: The original, unprocessed raw data are retained. ASTERGDEM_MOSAIC_DEM: Inlay the dem.tif data using Erdas software, and parameter settings use default values. ASRERGDEM_MOSAIC_NUM: Inlay the num.tif data using Erdas software, and parameter settings use default values. The original raw data are retained, and the accuracy is consistent with that of the ASTERGDEM data distribution website. The horizontal accuracy of the data is 30 meters, and the elevation accuracy is 20 meters. The mosaic data are made by Erdas, and the parameter settings use the default values.

0 2021-04-09