Standard weather station monthly data of the Yellow River’s Upstream (1952-2011)

I. Overview This dataset contains monthly meteorological data for the upper Yellow River and its surroundings from 1952 to 2011. The standard station data includes 30 elements: average station pressure, extreme maximum station pressure, date of extreme maximum station pressure, extreme minimum station pressure, date of extreme minimum station pressure, average temperature, and extreme maximum temperature. , Extreme high temperature appearance day, extreme minimum temperature, extreme minimum temperature appearance day, average temperature anomaly, average maximum temperature, average minimum temperature, average relative humidity, minimum relative humidity, minimum relative humidity occurrence date, precipitation, daily precipitation > = 0.1mm days, maximum daily precipitation, maximum daily precipitation occurrence day, percentage of precipitation anomaly, average wind speed, maximum wind speed, day of maximum wind speed, maximum wind speed, wind direction of maximum wind speed, wind direction of maximum wind speed , The day of maximum wind speed, the hours of sunshine, and the percentage of sunshine. Ⅱ. Data processing description The data is stored as integers, the temperature unit is (0.1 ° C) value, the precipitation unit is (0.1 mm), and it is stored as an ASCII text file. Ⅲ. Data content description Standard station data, all meteorological elements are stored in one text, each element is: average own station pressure (V10004), extreme highest station pressure (V10201), extreme highest station pressure (V10201_001), extreme lowest station Barometric pressure (V10202), the day when the extreme minimum atmospheric pressure appeared (V10202_002), the average temperature (V12001), the extreme maximum temperature (V12011), the extreme maximum temperature (V12011_001), the extreme minimum temperature (V12012), the extreme minimum temperature (V12012_002), average temperature anomaly (V12201), average maximum temperature (V12211), average minimum temperature (V12212), average relative humidity (V13003), minimum relative humidity (V13007), minimum relative humidity occurrence date (V13007_001), precipitation Amount (V13011), daily precipitation> = 0.1mm days (V13011_000), maximum daily precipitation (V13052), maximum daily precipitation (V13052_001), percentage of precipitation anomaly (V13212), average wind speed (V11002), polar High wind speed (V11041), the day when the maximum wind speed appears (V11041_001), the maximum wind speed (V11042), the wind direction of the maximum wind speed (V11043), the wind direction of the maximum wind speed (V11212), the maximum wind speed Today (V11212_001), hours of sunshine (V14032), percentage of sunshine (V14033). Ⅳ. Data usage description In terms of resources and environment, meteorological data is used to simulate the regional climate change and runoff, sediment, water and soil loss and vegetation change in the basin, and it is also a necessary input condition for remote sensing inversion.

0 2020-06-05

Standard weather station diurnal data of the Yellow River’s Upstream (1952-2011)

Ⅰ. Overview This dataset contains daily meteorological data for the upper Yellow River and its surroundings from 1952 to 2011. Standard station data includes 15 elements: average pressure, maximum pressure, minimum pressure, average temperature, maximum temperature, minimum temperature, average relative humidity, minimum relative humidity, precipitation, average wind speed, maximum wind speed, maximum wind speed and direction, Maximum wind speed, maximum wind speed and direction and sunshine hours. Ⅱ. Data processing description The data is stored as integers, the temperature unit is (0.1 ° C) value, the precipitation unit is (0.1 mm), and it is stored as an ASCII text file. Ⅲ. Data content description Standard station data. All meteorological elements are stored in one text. V0100 indicates the station number, v04001 indicates the year, v04002 indicates the month, v04003 indicates the day, v10004 indicates the average pressure, v10201 indicates the maximum pressure, v10202 indicates the minimum pressure, and v12001 indicates the average temperature. v12052 indicates the highest temperature, v12053 indicates the lowest temperature, v13003 indicates the average relative humidity, v13007 indicates the minimum relative humidity, v13201 indicates the precipitation, v11002 indicates the average wind speed, v11042 maximum wind speed, v11212 indicates the maximum wind speed and direction, v11041 indicates the maximum wind speed, and v11043 indicates Extreme wind speed and direction, v14032 represents sunshine hours. Ⅳ. Data usage description In terms of resources and environment, meteorological data is used to simulate the regional climate change and runoff, sediment, water and soil loss and vegetation change in the basin, and it is also a necessary input condition for remote sensing inversion.

0 2020-06-05

Automatic weather station dataset from Guoluo station (2017)

The data set contains meteorological observations from Guoluo Station from January 1, 2017, to December 31, 2017, and includes temperature (Ta_1_AVG), relative humidity (RH_1_AVG), vapour pressure (Pvapor_1_AVG), average wind speed (WS_AVG), atmospheric pressure (P_1), average downward longwave radiation (DLR_5_AVG), average upward longwave radiation (ULR_5_AVG), average net radiation (Rn_5_AVG), average soil temperature (Ts_TCAV_AVG), soil water content (Smoist_AVG), total precipitation (Rain_7_TOT), downward longwave radiation (CG3_down_Avg), upward longwave radiation (CGR3_up_Avg), average photosynthetically active radiation (Par_Avg), etc. The temporal resolution is 1 hour. Missing observations have been assigned a value of -99999.

0 2020-06-03

Meteorological observation dataset of Shiquan River Source (2012-2015)

This dataset includes the temperature, precipitation, relative humidity, wind speed, wind direction and other daily values in the observation point of Shiquan River Source. The data is observed from July 2, 2012 to August 5, 2014, and from September 30, 2015 to December 25, 2015. It is measured by automatic meteorological station (Onset Company) and a piece of data is recorded every 2 hours. The original data forms a continuous time series after quality control, and the daily mean index data is obtained through calculation. The original data meets the accuracy requirements of China Meteorological Administration (CMA) and the World Meteorological Organization (WMO) for meteorological observation. Quality control includes eliminating the systematic error caused by the missing point data and sensor failure. The data is stored as an excel file.

0 2020-06-03

Yulong snow mountain glacier No.1, 4 300 m altitude, 2014-2018, the daily average meteorological observation dataset

1.The data content: air temperature, relative humidity, precipitation, air pressure, wind speed and vapor pressure. 2. Data sources and processing methods: campel mountain type automatic meteorological station observation by the United States, including air temperature and humidity sensor model HMP155A;Wind speed and direction finder models: 05103-45;The atmospheric pressure sensor: CS106;The measuring cylinder: TE525MM.Automatic meteorological station every ten minutes automatic acquisition data, after complete automatic acquisition daily meteorological data then daily mean value were calculated statistics. 3.Data quality description: automatic continuous access to data. 4.Data application results and prospects: the weather stations set in the upper of the glacier terminal, meteorological data can be used to simulate for predict the future climate change under the background of type Marine glacial changes in response to global climate change research provides data.

0 2020-06-02

Observation of water and heat flux in alpine meadow ecosystem —automatic weather station of E’bao station (2015-2016)

The data set contains the meteorological element observation data of ebao station in the upper reaches of heihe hydrometeorological observation network on January 1, 2015 and December 31, 2016.The station is located in ebao town, qilian county, qinghai province.The longitude and latitude of the observation point are 100.9151E, 37.9492N, and the altitude is 3294m.The air temperature and relative humidity sensor is set up at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tipping bucket rain gauge is installed at 10m;The wind speed and direction sensor is mounted at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing south, with the probe facing vertically downward;The soil temperature probe is buried at the surface of 0cm and underground of 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm, 2m south of the meteorological tower.The soil moisture probe is buried underground at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm, 2m south of the meteorological tower.The soil heat flow plates (3 pieces) are successively buried 6cm underground, 2m south of the meteorological tower. Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: wattage/m2), soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: water content by volume, percentage). Processing and quality control of observation data :(1) 144 data per day (every 10min) should be ensured.The four-component radiation and infrared temperature were between October 11, 2015 and November 5, 2015.The instrument of the observation tower was re-adjusted between 11.1 and 11.5, and the data was missing;(2) eliminate the moments with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letters in the data is questionable data;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 2015-9-10 10:30;(6) naming rules: AWS+ site name. For information of hydrometeorological network or site, please refer to Li et al. (2013), and for data processing, please refer to Liu et al. (2011).

0 2020-06-01

Observation of water and heat flux in alpine meadow ecosystem —automatic weather station of Jingyangling station (2015-2017)

The data set contains the meteorological element observation data of jingyangling station in the upper reaches of heihe hydrometeorological observation network on January 1, 2015 and December 31, 2017.The site is located in pass, jingyangling mountain, qilian county, qinghai province.The longitude and latitude of the observation point are 101.1160E, 37.8384N and 3750m above sea level.The air temperature and relative humidity sensor is set up at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tipping bucket rain gauge is installed at 10m;The wind speed and direction sensor is mounted at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing south, with the probe facing vertically downward;The soil temperature probe is buried at the surface of 0cm and underground of 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm, 2m south of the meteorological tower.The soil moisture probe is buried underground at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm, 2m south of the meteorological tower.The soil heat flow plates (3 pieces) are successively buried 6cm underground, 2m south of the meteorological tower. Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:Soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: percent). Processing and quality control of observation data :(1) 144 data per day (every 10min) should be ensured.(2) eliminate the moments with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letters in the data is questionable data;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 2015-9-10 10:30;(6) naming rules: AWS+ site name. For information of hydrometeorological network or site, please refer to Li et al. (2013), and for data processing, please refer to Liu et al. (2011).

0 2020-05-29

Observation of water and heat flux in alpine meadow ecosystem--automatic weather station of Yakou station(2015-2017)

This data set contains the data of meteorological elements observed in the pass station upstream of heihewen meteorological observation network on January 1, 2015 and December 31, 2015.The site is located in da dong shu pass, qilian county, qinghai province.The longitude and latitude of the observation point are 100.2421E, 38.0142N, and the altitude is 4148m.Data including two observation points, all in pass observatory, located about 10 m, a set of continuous observation in 2015 (30 min output), another set for September 18, 2015 in 10 m high pass new stations (10 min), specific include: air temperature, relative humidity sensors at 5 m, toward the north (two sets of observation, 10 min and 30 min output);The barometer is installed in the skid-proof box on the ground (two groups of observation, 10min and 30min output respectively);The tipping bucket rain gauge is installed at 10m;The wind speed and direction sensor is mounted at 10m, facing due north (two groups, 10min and 30min output respectively).The four-component radiometer consists of two observation points, one is installed at the meteorological tower 6m, facing due south (10min output), and the other is installed on the support 1.5m above the ground (30min output).Two infrared thermometers are installed at 6m, facing south, with the probe facing vertically downward;The soil temperature probe was buried at 0cm on the surface and 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground (the two groups were observed for 10min and 30min respectively).The soil moisture probe was buried in the ground at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm (the two groups were observed for 10min and 30min respectively).The soil heat flow plate was buried 6cm underground (observed in two groups, 10min (3 heat flow plates) and 30min (2 heat flow plates)). Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: wattage/m2), soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: water content by volume, percentage). Processing and quality control of observation data :(1) 144 or 48 data per day (every 10min or 30min) should be ensured.The four-component long-wave radiation output of 30min was between January 1, 2015 and January 1, 2015.The observation data was lost between 5.24 and 7.12 after 30min due to the collector problem.(2) eliminate the moments with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letters in the data is questionable data;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 2015-9-10 10:30;(6) naming rules: AWS+ site name. For information of hydrometeorological network or site, please refer to Li et al. (2013), and for data processing, please refer to Liu et al. (2011).

0 2020-05-29

Distribution of the average wind speed in Central Asia (2017)

The data set is the average wind speed of the Central Asia including three temperate deserts, the Karakum, Kyzylkum and Muyunkun Deserts, and one of the world's largest arid zones. The data was obtained by GLDAS global three-hour assimilation data extraction calculation. The data is in tif format. The space and time resolutions are 0.25° and 3 hours respectively. The time is from 01, January, 2017 to 31, December, 2017. The data set uses the the Geodetic coordinate system. We can use the data to calculate the sand flux. It can be used for the investigation of the Desert oil and gas field, and oasis cities.

0 2020-05-29

The precipitation, hail days and gale days in Tibet Autonomous Region (1989-1994)

The data set includes data on precipitation, hail days and gale days in Tibet from 1989 to 1994. The data were derived from the Tibet Society and Economics Statistical Yearbook and the Tibet Statistical Yearbook. The accuracy of the data is consistent with that of the statistical yearbook. The table contains 7 fields. Field 1: Year Interpretation: Year of the data Field 2: Location Field 3: Annual precipitation Unit: mm Field 4: Precipitation during May to October Unit: mm Field 5: Precipitation during November to the next April Unit: mm Field 6: Hail day Field 7: Gale day

0 2020-05-28