1:100,000 landuse data in the Yellow River Upstream (2005)

Ⅰ. Overview This data set is based on Landsat MSS, TM and ETM Remote sensing data by means of satellite remote sensing. Using a hierarchical land cover classification system, the data divides the whole region into six first-class classifications (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining land, residential land and unused land), and 31 second-class classifications. Ⅱ. Data processing description The data set is based on Landsat MSS, TM and ETM Remote sensing data as the base map, the data set projection is set as Alberts equal product projection, the scale is set at 1:24,000 for human-computer interactive visual interpretation, and the data set storage form is ESRI coverage format. Ⅲ. Data content description The data set adopts a hierarchical land cover classification system, which is divided into 6 first-class classifications (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining land, residential land and unused land), and 31 second-class classifications. Ⅳ. Data use description The data can be mainly used in national land resources survey, climate change, hydrology and ecological research.

0 2020-03-28

Vegetation Index (NDVI) data of Tibetan Plateau

The data include NDVI data of Tibetan Plateau region, with spatial resolution 1000m, time resolution 16d, and time coverage in 2000, 2005, 2010 and 2015.The data source is MOD13A2(C6).NDVI is a kind of vegetation index formed by combining visible light and near-infrared bands of satellites according to the spectral characteristics of vegetation.NDVI is a simple, effective and empirical measure of surface vegetation.The data is of great significance for analyzing the ecological environment of Tibetan Plateau.

0 2019-10-27

Population, urbanization, GDP and industrial structure forecast scenario data of the Yerqiang River Basin (Version 1.0) (2010-2050)

Taking 2005 as the base year, the future population scenario prediction adopted the Logistic model of population; not only is it better able to describe the change pattern of population and biomass, but it is also widely applied in the economic field. The urbanization rate was predicted using the urbanization Logistic model. Based on the existing urbanization horizontal sequence value, the prediction model was established by acquiring the parameters in the parametric equation applying nonlinear regression. The urban population was calculated by multiplying the predicted population by the urbanization rate. The Logistic model was used to predict the future gross national product of each county (or city), and then according to the economic development level of each county (or city) in each period (in terms of real GDP per capita), the corresponding industrial structure scenarios in each period were set, and the output value of each industry was predicted. The trend of changing industrial structure in China and the research area lagged behind the growth of GDP and was therefore adjusted according to the need of the future industrial structure scenarios of the research area.

0 2019-09-15

Monthly MODIS and AVHRR-based land surface evapotranspiration dataset in Qilian Mountain area (ETHi-merge, V1) (1985-2015)

This dataset contains monthly land surface evapotranspiration products in Qilian Mountain area every 5 years from 1985 to 2015. It has 0.05 degree spatial resolution from 1985 to 1995 and 0.01 degree spatial resolution from 2000 to 2015. The dataset was produced based on Gaussian Process Regression (GPR) method by fusing six satellite-derived evapotranspiration products including RS-PM (Mu et al., 2011), SW (Shuttleworth and Wallace., 1985), PT-JPL (Fisher et al., 2008), MS-PT (Yao et al., 2013), SEMI-PM (Wang et al., 2010a) and SIM (Wang et al.2008). The input variables for the evapotranspiration products include MODIS products, GIMMS AVHRR NDVI and China Meteorological Forcing Dataset (He Jie, Yang Kun. China Meteorological Forcing Dataset. Cold and Arid Regions Science Data Center at Lanzhou, 2011. doi:10.3972/westdc.002.2014.db).

0 2019-09-15

Population, urbanization, GDP and industrial structure forecast scenario data of the Manasi River Basin (Version 1.0) (2010-2050)

Taking 2005 as the base year, the future population scenario was predicted by adopting the Logistic model of population. It not only can better describe the change pattern of population and biomass but is also widely applied in the economic field. The urbanization rate was predicted by using the urbanization Logistic model. Based on the existing urbanization horizontal sequence value, the prediction model was established by acquiring the parameters in the parametric equation by nonlinear regression. The urban population was calculated by multiplying the predicted population by the urbanization rate. The data adopted the non-agricultural population. The Logistic model was used to predict the future gross national product of each county (or city), and then, according to the economic development level of each county (or city) in each period (in terms of GDP per capita),the corresponding industrial structure scenarios in each period were set, and the output value of each industry was predicted. The trend of changes in industrial structure in China and the research area lagged behind the growth of GDP and was therefore adjusted according to the need of the future industrial structure scenarios of the research area.

0 2019-09-15

Population, urbanization, GDP and industrial structure predictions for the Aksu River Basin (Version 1.0) (2010-2050)

Taking 2005 as the base year, the future population scenario was predicted by adopting the logistic model of population. This model not only effectively describes the pattern of changes in population and biomass but is also widely applied in the field of economics. The urbanization rate was predicted using the urbanization logistic model. Based on the observed horizontal pattern of urbanization, a predictive model was established by determining the parameters in the parametric equation by applying nonlinear regression. The urban population was calculated by multiplying the predicted population by the urbanization rate. The data represent the non-agricultural population. The logistic model was used to predict the future gross domestic product of each county (or city), and then the economic development level of each county (or city) in each period (in terms of GDP per capita). The corresponding industrial structure scenarios in each period were set, and the output value of each industry was predicted. The trend of industrial structure changes in China and the research area lagged behind the growth in GDP, so the changes were adjusted according to the need for future industrial structure scenarios in the research area.

0 2019-09-15

Vulnerability forecast scenarios dataset of the water resources, agriculture, and ecosystem of the Manasi River Basin (Version 1.0) (2010-2050)

By applying Supply-demand Balance Analysis, the water resource supply and demand of the whole river basin and each county or district were calculated, on which basis the vulnerability of the water resources system of the basin was evaluated. The IPAT equation was used to set a future water resource demand scenario, setting variables such as future population growth rate, economic growth rate, and unit GDP water consumption to establish the scenario. By taking 2005 as the base year and using assorted forecasting data of population size and economic scale, the future water demand scenarios of various counties and cities from 2010 to 2050 were predicted. By applying the basic structure of the HBV conceptual hydrological model of the Swedish Hydrometeorological Institute, a model of the variation tendency of the basin under climate change was designed. The glacial melting scenario was used as the model input to construct the runoff scenario under climate change. According to the national regulations for the water resources allocation of the basin, a water distribution plan was set up to calculate the water supply comprehensively. Considering the supply and demand situation, the water resource system vulnerability was evaluated by the water shortage rate. By calculating the (grain production) land pressure index of the major counties and cities in the basin, the balance of supply and demand of land resources under the climate change, glacial melt and population growth scenarios was analyzed, and the vulnerability of the agricultural system was evaluated. The Miami formula and HANPP model were used to calculate the human appropriation of net primary biomass and primary biomass in the major counties and cities for the future, and the vulnerability of ecosystems from the perspective of supply and demand balance was assessed.

0 2019-09-14

Vulnerability forecast scenarios dataset of water resources, agriculture, and ecosystem of the Urmuqi River Basin (Version 1.0) ( 2010-2050)

By applying Supply-demand Balance Analysis, the water resource supply and demand of the whole river basin and each county or district were calculated, based on which the vulnerability of the water resources system of the basin was evaluated. The IPAT equation was used to set a future water resource demand scenario, which was to establish the scenario by setting variables such as future population growth rate, economic growth rate, and unit GDP water consumption. By taking 2005 as the base year and using assorted forecasting data of population size and economic scale, the future water demand scenarios of various counties and cities from 2010 to 2050 were predicted. By applying the basic structure of the HBV conceptual hydrological model of the Swedish Hydrometeorological Institute, a model of the variation tendency of the basin under climate change was designed. The glacial melting scenario was used as the model input to construct the runoff scenario under climate change. According to the national regulations of the water resources allocation of the basin, a water distribution plan was set up to calculate the water supply comprehensively. Considering the supply and demand situation, the water resource system vulnerability was evaluated by the water shortage rate. By calculating the (grain production) land pressure index of the major counties and cities in the basin, the balance of supply and demand of land resources under the climate change, glacial melt and population growth scenarios was analyzed, and the vulnerability of the agricultural system was evaluated. The Miami formula and HANPP model were used to calculate the human appropriation of net primary biomass and primary biomass in the major counties and cities for the future, and the vulnerability of ecosystems from the perspective of supply and demand balance was assessed.

0 2019-09-13

Landsat-based continuous monthly 30m×30m land surface NDVI dataset in Qilian Mountain area (1986-2017)

This data set includes the monthly synthesis of 30m*30m surface vegetation index products in Qilian mountain area in 1986, 1990, 1995, 2000, 2005, 2010, 2015, and 2017. Max value composition (MVC) method was used to synthesize monthly NDVI products on the surface using the reflectivity data of Landsat 5, Landsat 8 and sentinel 2 channels from Red and NIR channels. The data are synthesized monthly through Google Earth Engine cloud platform, and the missing pixels are interpolated by calculating the index of the model. The quality of the data is good, and it can be used in environmental change monitoring and other fields.

0 2019-09-12

Vulnerability forecast scenarios dataset of water resources, agriculture, ecosystem of Aksu River Basin (Version 1.0) (2010-2050)

By applying supply-demand balance analysis, the water resource supply and demand of the whole river basin and each county or district were calculated, and the results were used to assess the vulnerability of the water resources system in the basin. The IPAT equation was used to establish a future water resource demand scenario, which involved setting various variables, such as the future population growth rate, economic growth rate, and water consumption per unit GDP. By taking 2005 as the base year and using assorted forecasting data of population size and economic scale, the future water demand scenarios of various counties and cities from 2010 to 2050 were predicted. By applying the basic structure of the HBV conceptual hydrological model of the Swedish Hydro-meteorological Institute, a model of the variation trends of the basin under a changing climate was designed. The glacial melting scenario was used as the model input to construct the runoff scenario in response to climate change. According to the national regulations of the water resource allocation in the basin, a water distribution plan was set up to calculate the water supply comprehensively. Considering the supply and demand situation, the water resource system vulnerability was evaluated by the water shortage rate. By calculating the grain production-related land pressure index of the major counties and cities in the basin, the balance of supply and demand of land resources in scenarios of climate change, glacial melting and population growth was analysed, and the vulnerability of the agricultural system was evaluated. The Miami formula and HANPP model were used to calculate the human appropriation of net primary biomass and primary biomass in the major counties and cities in the future, and the vulnerability of ecosystems from the perspective of supply and demand balance was assessed.

0 2019-09-12