Continent-wide annual ice velocity maps in Antarctic ice sheet between 2013 and 2019

This dataset includes annual mosaics of Antarctic ice velocity derived from Landsat 8 images between December, 2013 and April, 2019, which was updated in 2020 in order to produce multi-year annual ice velocity mosaics and improve the quality of products including non-local means (NLM) filter, and absolute calibration using rock outcrops data. The resulting Version 2 of the mosaics offer reduced local errors, improved spatial resolution as described in the README file.

0 2020-11-17

Glacier velocity of the Central Karakoram (Version 1.0) (1999-2003)

Under the background of global warming, mountain glaciers worldwide are facing strong ablation and retreat, but from existing field observations, it is found that most of the glaciers in the Karakorum region remain stable or are advancing, which is called the "Karakorum anomaly". Glacier surface velocity is an important parameter for studying glacier dynamics and mass balance. Studying the temporal and spatial variation characteristics of glacier velocity in central Karakorum is significant for understanding the dynamic characteristics of the glacier in this region and its response to climate change. Four pairs of Landsat 7 ETM+ images acquired in 1999 to 2003 (images acquired on 1999.7.16, 2000.6.16, 2001.7.21, 2002.8.9, 2002.4.19, 2003.3.21) were selected; using the panchromatic band with a resolution of 15 m, each pair of images was accurately registered, and then cross-correlation calculations were then performed on each image pair after registration to obtain the surface velocity of the glacier in the central Karakorum region from 1999 to 2003. Due to the lack of velocity observation data in the study area, the accuracy of the ice flow results is estimated using the offset value of the stable region, and the surface velocity error of the glacier is approximately ±7 m/year. The glacier velocity data dates are from 1999 to 2003, with a temporal resolution of one year. They cover the central Karakorum region, with a spatial resolution of 30 m. The data are stored as a GeoTIFF file every year. For details regarding the data, please refer to the data description.

0 2020-04-29

Ice velocity of the Amery ice shelf in the Antarctic (Version 1.0) (2003-2013)

Using the Modis1B data of 11 scenes from 2003 to 2013 (the ice shelf Modis1B data published on the NSIDC website), the surface velocity of the Antarctic Amery Ice Shelf was extracted by the subpixel cross-correlation method, the ice velocity was extracted by the COSI-Corr software, and then the time sequence of annual average velocities for nearly ten years was obtained. Due to the lack of field observations in the study area, the accuracy of the ice flow results was estimated by using the offset value of the stable region, and the ice flow error was approximately ±50 m/year. The ice velocity data date from 2003 to 2013, the temporal resolution is one year, and the data cover the Amery area with a spatial resolution of 500 m. A GeoTIFF file of velocity data is stored every year. For details regarding the data, please refer to the Amery Ice Flow Field - Data Description.

0 2020-04-29

Typical glacial velocity dataset of the north and south poles of the QTP (2000-2017) v1.0

Glaciers are very sensitive to regional and global climate change, so they are often regarded as one of the indicators of climate change, and their relevant parameters are also the key indicators of climate change research. Especially in the comparative study of the three polar environmental changes on the earth, the time and space difference ratio of glacial speed is one of the focuses of climate change research. However, because glaciers are basically located in high altitude, high latitude and high cold areas, the natural environment is poor, and people are rarely seen, and it is difficult to carry out the conventional field measurement of large-scale glacial movement. In order to understand the glacial movement in the three polar areas in a timely, efficient, comprehensive and accurate manner, radar interferometry, radar and optical image pixel tracking are used to obtain the three polar areas. The distribution of surface movement of some typical glaciers in some years from 2000 to 2017 provides basic data for the comparative analysis of the movement of the three polar glaciers. The dataset contains 12 grid files named "glacier movement in a certain period of time in a certain region". Each grid map mainly contains the regional velocity distribution of a typical glacier.

0 2019-10-26