Long-term runoff observation with ten-days interval of Yingluoxia and Zhengyixia gorges in Heihe River Basin (1994-2010)

This data mainly includes ten day runoff data of Yingluo gorge and Zhengyi gorge in Heihe River Basin, among which the time range of Yingluo gorge data is 1944-2010 and Zhengyi gorge data is 1947-2010. Source: Heihe River Basin Authority. Data unit: 100 million cubic meters / 10 days. Data format: Excel "Yingluo gorge 2" and "Yingluo gorge 2 (2)" in the data table are the ten day runoff data of Yingluo gorge, the same as "Yingluo gorge" in the data table, and Yingluo gorge 2 (2) contains the chart.

0 2020-09-14

Basic data set of the Great Lakes region of Central Asia - Hydrology (2016)

Runoff is formed by atmospheric precipitation and flows into rivers, lakes or oceans through different paths in the basin. It is also used to refer to the amount of water passing through a certain section of the river in a certain period of time, i.e. runoff. Runoff data plays an important role in the study of hydrology and water resources, which affects the development of social economy in central Adam. This data is the flow of five Central Asian countries (Kazakhstan, Kyrgyzstan, Tajikistan, Uzbekistan and Turkmenistan), which comes from the hydrometeorological bureaus of Central Asian countries. The time scale is the average annual data of 2015. This data provides basic data for the project, which is convenient to analyze the situation of eco hydrological water resources in Central Asia, and provides data support for project data analysis.

0 2020-08-27

Soil observation and leaf area index and aboveground biomass of maize sampling points in Yingke Daman area of Heihe River Basin (2012)

The experimental data of Yingke Daman in Heihe River Basin is supported by the key fund project of Heihe River plan, "eco hydrological effect of agricultural water saving in Heihe River Basin and multi-scale water use efficiency evaluation". Including: soil bulk density, soil water content, soil texture, corn sample biomass, cross-section flow, etc Data Description: 1. Sampling location of Lai and aboveground biomass: Yingke irrigation district; sampling time: May 2012 to September 2012; Lai and aboveground biomass of maize were measured by canopy analyzer (lp-80), and aboveground biomass was measured by sampling drying method; sample number: 16. 2. Soil texture: Sampling location: Yingke irrigation district and Shiqiao Wudou Er Nongqu farmland in Yingke irrigation district; soil sampling depth is 140 cm, sampling levels are 0-20 cm every 10 cm, 20-80 cm every 20 cm, 80-140 cm every 30 cm; sampling time: 2012; measurement method: laboratory laser particle size analyzer; sample number: 38. 3. Soil bulk density: Sampling location: Yingke irrigation district and Daman irrigation district; sampling depth of soil bulk density is 100 cm, sampling levels are 0-50 cm and 50-100 cm respectively; sampling time: 2012; measurement method: ring knife method; number of sample points: 34. 4. Soil moisture content: this data is part of the monitoring content of hydrological elements in Yingke irrigation district. The specific sampling location is: Shiqiao Wudou Er Nongqu farmland in Yingke Irrigation District, planting corn for seed production; soil moisture sampling depth is 140 cm, sampling levels are 0-20 cm every 10 cm, 20-80 cm every 20 cm, 80-140 cm every 30 cm Methods: soil drying method and TDR measurement; sample number: 17. 5. Cross section flow: Sampling location: the farmland of Wudou Er Nong canal in Shiqiao, Yingke irrigation district; measure the flow velocity, water level and water temperature of different canal system sections during each irrigation, record the time and calculated flow, monitor once every 3 hours until the end of irrigation; sampling time: 2012.5-2012.9; measurement method: Doppler ultrasonic flow velocity meter (hoh-l-01, Measurement times: Yingke irrigation data of four times.

0 2020-07-30

Monitoring data of river section flow and soil and groundwater temperature in hulugou small watershed (July September 2014-2015)

The data includes the discharge data of the outlet river of No.2 catchment area of hulugou small watershed from July 24 to September 11, 2014 / 2015. Sampling location: the coordinates of river flow monitoring section are located at the outlet of No. 2 catchment area, near the red wall, with coordinates of 99 ° 52 ′ 58.40 ″ E and 38 ° 14 ′ 36.85 ″ n. The soil temperature monitoring depth in hulugou is 20cm, 50cm, 100cm, 200cm and 300cm. The monitoring depth of groundwater temperature is 10m. The observation frequency is 1 time / 1 hour. The time range of observation data is from May 13, 2015 to September 5, 2015. Sampling location: the soil temperature monitoring point in hulugou small watershed is located in the middle of the Delta, with the geographic coordinates of 99 ° 52 ′ 45.38 ″ E and 38 ° 15 ′ 21.27 ″ n.

0 2020-07-30

Landsat-based continuous monthly 30m×30m Land Surface FVC Dataset in Qilian mountain area (V1.0)

This data set includes a monthly composite of 30 m × 30 m surface vegetation coverage products in the Qilian Mountain Area in 2019. In this paper, the maximum value composition (MVC) method is used to synthesize monthly NDVI products and calculate FVC by using the reflectance data of Landsat 8 and sentinel 2 red and near infrared channels. The data is monthly synthesized by Google Earth engine cloud platform, and the index is calculated by the model. The missing pixels are interpolated with good quality, which can be used in environmental change monitoring and other fields.

0 2020-06-15

The river flow in Hulugou catchment catchment from May to Sep , 2016

1、 Data Description: the data includes the river flow data at the outlet of No.2 catchment of hulugou small watershed from May 4, 2016 to September 3, 2016. 2、 Sampling location: the coordinates of river flow monitoring section are located at the outlet of No. 2 catchment near the red wall, with the coordinates of 99 ° 52 ′ 58.40 ″ E and 38 ° 14 ′ 36.85 ″ n.

0 2020-06-03

Daily runoff data of Akjar hydrological station from Syr Darya (2018)

This data is the daily runoff data of akjar hydrological station in Tajikistan in 2018. The data is from the hydrological and Meteorological Bureau of Tajikistan. The data are processed according to the hydrological observation specifications and quality control process of the country. The data can be used for scientific research and water conservancy engineering services such as water resources assessment in Central Asia mountainous areas. (name of hydrological station: akjar; river: Sir Darya; location: 40.666667 ° n / 70.733333 ° E; altitude: 367M; data period: January 1, 2018 to December 31, 2018; data element: daily runoff; unit: m3 / s)

0 2020-05-28

Hydrological dataset of China alpine region surface process and environmental observation network (2018)

Based on the long-term observation data of each field station in the alpine network and overseas stations in the pan third polar region, a series of data sets of meteorological, hydrological and ecological elements in the pan third polar region are established; the inversion of data products such as meteorological elements, lake water quantity and quality, aboveground vegetation biomass, glacial and frozen soil changes are completed through enhanced observation and sample site verification in key regions; based on the IOT Network technology, the development and establishment of multi station network meteorological, hydrological, ecological data management platform, to achieve real-time access to network data and remote control and sharing. In 2018, the hydrological data set of surface process and environmental observation network in China's alpine region mainly collects the daily measured hydrological (runoff, water level, water temperature, etc.) data of Qilianshan station, Southeast Tibet station, Zhufeng station, Yulong Xueshan station, Namucuo station, Ali station, mostag and other seven stations.

0 2020-05-14

Basic data set of the Great Lakes region of Central Asia - Hydrology (2015)

Runoff is formed by atmospheric precipitation and flows into rivers, lakes or oceans through different paths in the basin. It is also used to refer to the amount of water passing through a certain section of the river in a certain period of time, i.e. runoff. Runoff data plays an important role in the study of hydrology and water resources, which affects the social and economic development of Adam land. This data is the flow of five Central Asian countries (Kazakhstan, Kyrgyzstan, Tajikistan, Uzbekistan and Turkmenistan), which comes from the hydrometeorological bureaus of Central Asian countries. The time scale is the average annual data of 2015. This data provides basic data for the project, which is convenient to analyze the situation of eco hydrological water resources in Central Asia, and provides data support for project data analysis.

0 2020-05-13

HiWATER: Dataset of hydrometeorological observation network (No.4 runoff observation system of Wujing bridge on the Heihe River, 2014)

The data set includes the observation data of river water level and velocity at No. 4 point in the dense observation of runoff in the middle reaches of Heihe River from January 1 to June 25, 2014. The observation point is located in Heihe bridge, Shangbao village, Jing'an Township, Zhangye City, Gansu Province. The riverbed is sandy gravel with unstable section. The longitude and latitude of the observation point are n39 ° 03'53.23 ", E100 ° 25'59.31", with an altitude of 1431m and a width of 58m. In 2012, hobo pressure type water level gauge was used for water level observation with acquisition frequency of 30 minutes; since 2013, sr50 ultrasonic distance meter was used with acquisition frequency of 30 minutes. The data description includes the following parts: For water level observation, the observation frequency is 30 minutes, unit (CM); the data covers the period from January 1, 2014 to June 25, 2014; for flow observation, unit (M3); for flow monitoring according to different water levels, the water level flow curve is obtained, and the runoff change process is obtained based on the observation of water level process. The missing data is uniformly represented by string-6999. Refer to Li et al. (2013) for hydrometeorological network or station information and he et al. (2016) for observation data processing.

0 2020-03-14