Monthly dataset of ERA-Interim based on pressure levels from 1979 to 2018 released from ECMWF

This dataset is derived from the global atmospheric reanalysis dataset, ERA-Interim, based on the 4-dimensional variational analysis (4D-Var) released by the European Centre for Medium-Range Weather Forecasts (ECMWF). ERA-Interim represents a major undertaking by ECMWF (European Centre for Medium-Range Weather Forecasts) to produce a reanalysis with an improved atmospheric model and assimilation system which replaces those used in ERA-40, particularly for the data-rich 1990s and 2000s, and to be continued as an ECMWF Climate Data Assimilation System (ECDAS) until superseded by a new reanalysis. Through systematic increases in computing power, 4-dimensional variational assimilation (4D-Var) became feasible and part of ECMWF operations since 1997. Enhanced computing power also allowed horizontal resolution to be increased from T159 to T255, and the latest Integrated Forecasting System(IFS CY31r1 and CY31r2) to be used, taking advantage of improved model physics. ERA-interim retains the same 60 model levels used for ERA-40 with the highest level being 0.1 hPa. Besides, data assimilation of ERA-Interim also benefits from quality control that draws on experience from ERA-40 and JRA-25, variational bias correction of satellite radiance data, and more extensive use of radiances with an improved fast radiative transfer model. In addition, ERA-Interim uses the new ERS (European Remote Sensing Satellite) altimeter wave heights, EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) reprocessed winds and clear-sky radiances, GOME (Global Ozone Monitoring Experiment) ozone data from the Rutherford Appleton Laboratory, and CHAMP (CHAllenging Minisatellite Payload), GRACE (Gravity Recovery and Climate Experiment), and COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) GPS radio occultation measurements processed and archived by UCAR (University Corporation for Atmospheric Research).

0 2020-05-30

Observation of water and heat flux in alpine meadow ecosystem —automatic weather station of Jingyangling station (2015-2017)

The data set contains the meteorological element observation data of jingyangling station in the upper reaches of heihe hydrometeorological observation network on January 1, 2015 and December 31, 2017.The site is located in pass, jingyangling mountain, qilian county, qinghai province.The longitude and latitude of the observation point are 101.1160E, 37.8384N and 3750m above sea level.The air temperature and relative humidity sensor is set up at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tipping bucket rain gauge is installed at 10m;The wind speed and direction sensor is mounted at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing south, with the probe facing vertically downward;The soil temperature probe is buried at the surface of 0cm and underground of 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm, 2m south of the meteorological tower.The soil moisture probe is buried underground at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm, 2m south of the meteorological tower.The soil heat flow plates (3 pieces) are successively buried 6cm underground, 2m south of the meteorological tower. Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:Soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: percent). Processing and quality control of observation data :(1) 144 data per day (every 10min) should be ensured.(2) eliminate the moments with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letters in the data is questionable data;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 2015-9-10 10:30;(6) naming rules: AWS+ site name. For information of hydrometeorological network or site, please refer to Li et al. (2013), and for data processing, please refer to Liu et al. (2011).

0 2020-05-29

Observation of water and heat flux in alpine meadow ecosystem--automatic weather station of Yakou station(2015-2017)

This data set contains the data of meteorological elements observed in the pass station upstream of heihewen meteorological observation network on January 1, 2015 and December 31, 2015.The site is located in da dong shu pass, qilian county, qinghai province.The longitude and latitude of the observation point are 100.2421E, 38.0142N, and the altitude is 4148m.Data including two observation points, all in pass observatory, located about 10 m, a set of continuous observation in 2015 (30 min output), another set for September 18, 2015 in 10 m high pass new stations (10 min), specific include: air temperature, relative humidity sensors at 5 m, toward the north (two sets of observation, 10 min and 30 min output);The barometer is installed in the skid-proof box on the ground (two groups of observation, 10min and 30min output respectively);The tipping bucket rain gauge is installed at 10m;The wind speed and direction sensor is mounted at 10m, facing due north (two groups, 10min and 30min output respectively).The four-component radiometer consists of two observation points, one is installed at the meteorological tower 6m, facing due south (10min output), and the other is installed on the support 1.5m above the ground (30min output).Two infrared thermometers are installed at 6m, facing south, with the probe facing vertically downward;The soil temperature probe was buried at 0cm on the surface and 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground (the two groups were observed for 10min and 30min respectively).The soil moisture probe was buried in the ground at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm (the two groups were observed for 10min and 30min respectively).The soil heat flow plate was buried 6cm underground (observed in two groups, 10min (3 heat flow plates) and 30min (2 heat flow plates)). Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: wattage/m2), soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: water content by volume, percentage). Processing and quality control of observation data :(1) 144 or 48 data per day (every 10min or 30min) should be ensured.The four-component long-wave radiation output of 30min was between January 1, 2015 and January 1, 2015.The observation data was lost between 5.24 and 7.12 after 30min due to the collector problem.(2) eliminate the moments with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letters in the data is questionable data;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 2015-9-10 10:30;(6) naming rules: AWS+ site name. For information of hydrometeorological network or site, please refer to Li et al. (2013), and for data processing, please refer to Liu et al. (2011).

0 2020-05-29

Regular meteorological element datasets for 22 observing sites in Sri Lanka (2008-2018)

This data set includes the daily values of temperature, pressure, relative humidity, wind speed, wind direction, precipitation, radiation, and water vapor pressure observed from 22 international exchange stations in Sri Lanka from January 1, 2008 to October 1, 2018. The data was downloaded from the NCDC of NOAA. The data set processing method is that the original data is quality-controlled to form a continuous time series. It satisfies the accuracy of the original meteorological observation data of the National Weather Service and the World Meteorological Organization (WMO), and eliminates the systematic error caused by the failure of the tracking data and the sensor. The meteorological site information contained in this dataset is as follows: LATITUDE LONGITUDE ELEVATION  COUNTRY  STATION NAME +09.800  +080.067   +0015.0   SRI LANKA  KANKASANTURAI +09.650  +080.017   +0003.0   SRI LANKA  JAFFNA +09.267  +080.817   +0002.0   SRI LANKA  MULLAITTIVU +08.983  +079.917   +0003.0   SRI LANKA  MANNAR +08.750  +080.500   +0098.0   SRI LANKA  VAVUNIYA +08.539  +081.182   +0001.8   SRI LANKA  CHINA BAY +08.301  +080.428   +0098.8   SRI LANKA  ANURADHAPURA +08.117  +080.467   +0117.0   SRI LANKA  MAHA ILLUPPALLAMA +08.033  +079.833   +0002.0   SRI LANKA  PUTTALAM +07.706  +081.679   +0006.1   SRI LANKA  BATTICALOA +07.467  +080.367   +0116.0   SRI LANKA  KURUNEGALA +07.333  +080.633   +0477.0   SRI LANKA  KANDY +07.181  +079.866   +0008.8   SRI LANKA  BANDARANAIKE INTL COLOMBO +06.900  +079.867   +0007.0   SRI LANKA  COLOMBO +06.822  +079.886   +0006.7   SRI LANKA  COLOMBO RATMALANA +06.967  +080.767   +1880.0   SRI LANKA  NUWARA ELIYA +06.883  +081.833   +0008.0   SRI LANKA  POTTUVIL +06.817  +080.967   +1250.0   SRI LANKA  DIYATALAWA +06.983  +081.050   +0667.0   SRI LANKA  BADULLA +06.683  +080.400   +0088.0   SRI LANKA  RATNAPURA +06.033  +080.217   +0013.0   SRI LANKA  GALLE +06.117  +081.133   +0020.0   SRI LANKA  HAMBANTOTA

0 2020-05-14

Observation of water and heat flux in alpine meadow ecosystem——an observation system of Meteorological elements gradient of A’rou Superstation, 2015-2017

The data set contains the data of the meteorological element gradient observation system of the upper reaches of the heihe hydrological and meteorological observation network's arou super station on January 1, 2015 and December 31, 2017.Site is located in qilian county, qinghai province, arou township grass daban village, the underlying surface is alpine grassland.The longitude and latitude of the observation point are 100.4643E,38.0473N, and the altitude is 3033m.The air temperature, relative humidity and wind speed sensors are installed at 1m, 2m, 5m, 10m, 15m and 25m, respectively. There are 6 floors in total, facing due north.Wind direction sensor is mounted at 10m, facing due north;The barometer is installed at 2m;The tilting rain gauge is installed on the 40m observation tower of the super station in aru.The four-component radiometer is installed at 5m, facing due south;Two infrared thermometers are mounted at 5m, facing due south, with the probe facing down vertically;The photosynthetic effective radiometer was installed at 5m, facing south, and the probe direction was vertical upward.Part of the soil sensor is buried 2m away from the south of the tower, and the soil heat flow plate (self-calibration) (3 pieces) are all buried 6cm underground.Mean soil temperature sensor (tcavr) was buried 2cm and 4cm underground.The soil temperature probe is buried at the surface 0cm and underground 2cm, 4cm, 6cm, 10cm, 15cm, 20cm, 30cm, 40cm, 60cm, 80cm, 120cm, 160cm, 200cm, 240cm, 280cm and 320cm. There are three duplicates in the two layers of 4cm and 10cm.The soil moisture sensor was buried in the ground at 2cm, 4cm, 6cm, 10cm, 15cm, 20cm, 30cm, 40cm, 60cm, 80cm, 120cm, 160cm, 200cm, 240cm, 280cm and 320cm respectively, and there were three replications in the two layers of 4cm and 10cm. Observation items include: wind speed (WS_1m, WS_2m, WS_5m, WS_10m, WS_15m, WS_25m) (unit: m/s), wind direction (WD_10m) (unit: degrees), air temperature and humidity (Ta_1m, Ta_2m, Ta_5m, Ta_10m, Ta_15m, Ta_25m and RH_1m, RH_2m, RH_5m, RH_10m, RH_5m) (unit: Celsius, percentage), air pressure (Press) (unit:Hundred mpa), precipitation (Rain) (unit: mm), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit: c), photosynthetic active radiation (PAR) (unit: second micromoles/m2), the average soil temperature (TCAV) (unit: c), soil heat flux (Gs_1, Gs_2, Gs_3) (unit:W/m2), soil moisture (Ms_2cm, Ms_4cm_1, Ms_4cm_2, Ms_4cm_3, Ms_6cm, Ms_10cm_1, Ms_10cm_2, Ms_10cm_3, Ms_15cm, Ms_20cm, Ms_30cm, Ms_60cm, Ms_80cm, Ms_120cm, Ms_160cm, Ms_280cm, Ms_320cm) (unit:Soil temperature (Ts_0cm, Ts_2cm, Ts_4cm_1, Ts_4cm_2, Ts_4cm_3, Ts_6cm, Ts_10cm_1, Ts_10cm_2, Ts_15cm, Ts_20cm, Ts_30cm, Ts_60cm, Ts_80cm, Ts_120cm, Ts_160cm, Ts_280cm, Ts_320cm) (unit:Degrees Celsius. Processing and quality control of observation data :(1) 144 data per day (every 10min) should be ensured.The data of soil temperature and humidity and soil heat flux were missing between September 9, 2015 and September 19, 2015 and between September 30 and October 20, 2015 due to power supply problems.(2) eliminate the moments with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letters in the data is questionable data;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: June 10, 2015 10:30;(6) naming rules: AWS+ site name. For information of hydrometeorological network or site, please refer to Li et al. (2013), and for data processing, please refer to Liu et al. (2011).

0 2020-05-03

The simulated meteorology data by using WRF model on the Tibetan Plateau and its surronding area (2004-2013)

This data set is output from WRF model. The data include ‘LU_INDEX’ (land use category), ‘ZNU’(eta values on half (mass) levels), ‘ZNW’(eta values on full (w) levels),’ZS’(depths of centers of soil layers), ‘DZS’ (thicknesses of soil layers), ‘VAR_SSO’ (variance of subgrid-scale orography), ‘U’(x-wind component), ‘V’(y-wind component),’W’(z-wind component),’T’(perturbation potential temperature (theta-t0)), ‘Q2’ ('QV at 2 M), ‘T2’ (TEMP at 2 M), ‘TH2’ ('POT TEMP at 2 M), ‘PSFC’ (SFC pressure), ‘U10’ (U at 10 M), ‘V10’ (V at 10 M), ‘QVAPOR’ (Water vapor mixing ratio), ‘QLOUD’ (Cloud water mixing ratio),’QRAIN’ (Rain water mixing ratio), ‘QICE’ (Ice mixing ratio), ‘QSNOW’ (Snow mixing ratio), ‘SHDMAX’ (annual max veg fraction), ‘SHDMIN’ (annual min veg fraction), ‘SNOALB’ (annual max snow albedo in fraction), ‘TSLB’ (soil temperature), ‘SMOIS’ (soil moisture), ‘GRDFLX’ (ground heat flux), ‘LAI’ (Leaf area index),’ HGT’ (Terrain Height), ‘TSK’ (surface skin temperature), ‘SWDOWN’ (downward short wave flux at ground surface), ‘GLW’ (downward long wave flux at ground surface), ‘HFX’ (upward heat flux at the surface), ‘QFX’ (upward moisture flux at the surface), ‘LH’ (latent heat flux at the surface), ‘SNOWC’ (flag indicating snow coverage (1 for snow cover)), and so on. The data is in netCDF format with a spatial resolution of 10 km.

0 2020-04-28

Hydrogen and oxygen isotopes and hydrological information data set of lake water in the source area of the Yellow River (2014-2016)

In April 2014 and may 2016, 21 Lakes (7 non thermal lakes and 14 thermal lakes) were collected in the source area of the Yellow River (along the Yellow River) respectively. The abundance of hydrogen and oxygen allogens was measured by Delta V advantage dual inlet / hdevice system in inno tech Alberta laboratory in Victoria, Canada. The isotope abundance was expressed in the form of δ (‰) (relative to the average seawater abundance in Vienna) )Test error: δ 18O: 0.1 ‰, δ D: 1 ‰. The data also includes Lake area and lake basin area extracted from Landsat 2017 image data in Google Earth engine.

0 2020-04-23

China regional atmospheric driving dataset based on geostationary satellites and reanalysis data (2005-2010)

Based on the geostationary satellites and reanalysis data, the China Regional Atmospheric Driving Dataset is a set of atmospheric driving data sets with high spatiotemporal resolution prepared by the China Meteorological Administration, with a spatial resolution of 0.1 ° × 0.1 ° and a temporal resolution of 1 Hours, covering a range of 75 ° -135 ° east longitude and 15 ° -55 ° north latitude, include 6 elements of near-surface temperature, relative humidity, ground pressure, near-surface wind speed, incident solar radiation on the ground, and ground precipitation rate. The preparation process of precipitation products is as follows: The 6-hour cumulative precipitation estimated from the multi-channel data of the China Fengyun-2 geostationary satellite is integrated with the 6-hour cumulative precipitation from conventional ground observations to obtain 6-hour cumulative precipitation spatial distribution data, and then use the high-resolution cloud classification information retrieved from the multi-channel inversion of the geostationary satellites determines the interpolation time weight of the cumulative precipitation and obtains an estimated one-hour cumulative precipitation. The preparation process of the radiation data is as follows: The surface incident solar radiation based on FY-2C, uses the radiation transmission model DISORT (Discrete Ordinates Radiative Transfer Program for a Multi-Layered Plane-parallel Medium) to calculate the radiation transmission and obtains the data of surface incident solar radiation in China. Preparation process of other elements: The space and time interpolation method is used for the NCEP reanalysis data of 1.0 ° × 1.0 ° to obtain driving factors such as near-surface air temperature, relative humidity, ground pressure, and near-surface wind speed of 0.1 ° × 0.1 ° per hour. Physical meaning of each variable: Meteorological Elements || Variable Name || Unit || Physical Meaning | Surface temperature || TBOT || K || Surface temperature (2m) | Surface pressure || PSRF || Pa || Surface pressure | Relative humidity on the ground || RH || kg / kg || Relative humidity near the ground (2m) | Wind speed on the ground || WIND || m / s || Wind speed near the ground (anemometer height) | Surface incident solar radiation || FSDS || W / m2 || Surface incident solar radiation | Precipitation Rate || PRECTmms || mm / hr || Precipitation Rate For more information, see the data documentation published with the data.

0 2020-03-31

China meteorological forcing dataset (1979-2015)

The Chinese regional surface meteorological element data set is a set of near-surface meteorological and environmental element reanalysis data set developed by the Qinghai-Tibet Plateau Research Institute of the Chinese Academy of Sciences. The data set is based on the existing Princeton reanalysis data, GLDAS data, GEWEX-SRB radiation data and TRMM precipitation data in the world, and is made by combining the conventional meteorological observation data of China Meteorological Administration. The temporal resolution is 3 hours and the horizontal spatial resolution is 0.1, including 7 factors (variables) including near-surface air temperature, near-surface air pressure, near-surface air specific humidity, near-surface full wind speed, ground downward short wave radiation, ground downward long wave radiation and ground precipitation rate. The physical meaning of each variable: | Meteorological Element || Variable Name || Unit || Physical Meaning | near-surface temperature ||temp|| K || instantaneous near-surface (2m) temperature | surface pressure || pres|| Pa || instantaneous surface pressure | specific humidity of near-surface air || shum || kg/ kg || instantaneous specific humidity of near-surface air | near ground full wind speed || wind || m /s || instantaneous near ground (anemometer height) full wind speed | downward short wave radiation || srad || W/m2 || 3-hour average (-1.5 HR ~+1.5 HR) downward short wave radiation | Downward Long Wave Radiation ||lrad ||W/m2 ||3-hour Average (-1.5 hr ~+1.5 hr) Downward Long Wave Radiation | precipitation rate ||prec||mm/hr ||3-hour average (-3.0 HR ~ 0.0 HR) precipitation rate For more information, please refer to the "User's Guide for China Meteorological Al Forcing Dataset" published with the data. The main changes in the latest version (01.06.0014) are: 1. Extend the data to December 2015 (except for short-wave and long-wave data, only until October 2015; the data from November to December 2015 are interpolated based on GLDAS data, and the error may be too large); 2. Set the minimum wind speed at 0.05 m/s; 3. Fixed a bug in the previous radiation algorithm to make our short wave and long wave data more reasonable in the morning and evening periods. 4. bug of precipitation data has been corrected, and the period involved in the change is 2011-2015.

0 2020-03-28

Monthly average humidity of Heihe river basin (1961-2010)

Based on the data information provided by the data management center of Heihe project, the daily humidity data of 21 regular meteorological observation stations in Heihe River Basin and its surrounding areas and 13 national reference stations around Heihe River were collected and calculated. The spatial stability analysis is carried out to calculate the coefficient of variation. If the coefficient of variation is greater than 100%, the geographical weighted regression is used to calculate the relationship between the station and the geographical terrain factors, and the monthly humidity distribution trend is obtained; if the coefficient of variation is less than or equal to 100%, the common least square regression is used to calculate the relationship between the station humidity value and the geographical terrain factors (latitude, longitude, elevation, slope, aspect, etc.) The residual after removing the trend was fitted and corrected by HASM (high accuracy surface modeling method). Finally, the monthly average humidity distribution of the Heihe River Basin in 1961-2010 is obtained by adding the trend surface results and the residual correction results. Time resolution: monthly average humidity for many years from 1961 to 2010. Spatial resolution: 500M.

0 2020-03-28