Supply and demand dataset of agricultural water resources in Central Asian (2000s, 2010s, 2015s)

The data set of supply of agricultural water resources in Central Asian adopts the water balance method to calculate the precipitation and runoff depth on grid scale in five central Asian countries, respectively, and estimate the agricultural water resources supply in five central Asian countries. The data source is mainly the precipitation and runoff data products of NOAH model in GLDAS. Each original raster data of 0.25 ° is resampled, starting from the upper-left corner of the original grid, and extending to the adjacent right and lower grids in turn, and every four grids (0.5 °) are merged into one grid, taking the median data as the center point value corresponding to four grid of geographic coordinates. The extreme values of the grids could be eliminated. The data sets includes three time periods of 2000s (2001-2005), 2010s (2006-2010) and 2015s (2011-2015) with a spatial resolution of 0.5°*0.5°; The data of demand of agricultural water resources in Central Asia include irrigation water requirement of cotton and winter wheat in 2006, 2010 and 2016 over Central Asia. This was calculated by the equation of irrigation water requirement presented by FAO. It is expected to provide basic data support for distributed water cycle simulation, water supply and demand, development and utilization analysis in five central Asian countries.

0 2020-08-15

Monthly evapotranspiration dataset with 1 km spatial resolution over the Heihe River Basin Version 2.0 (2000-2013)

ET (ET) monitoring is crucial to agricultural water resource management, regional water resource utilization planning and socio-economic sustainable development.The limitations of traditional ET monitoring methods mainly lie in that they cannot observe a large area at the same time and can only be limited to observation points. Therefore, the cost of personnel and equipment is relatively high, and they can neither provide surface ET data, nor provide ET data of different land use types and crop types. Quantitative monitoring of ET can be achieved by using remote sensing. The characteristics of remote sensing information are that it can not only reflect the macroscopic structure characteristics of the earth surface, but also reflect the microscopic local differences. Version 2.0 (second edition) of the surface evapotranspiration data set of the heihe river basin from 2000 to 2013 is based on multi-source remote sensing data and the latest ETWatch model is adopted to estimate the raster image data. Its temporal resolution is monthly scale and the spatial resolution is 1km scale. The data covers the whole basin in millimeters.Data types include monthly, quarterly, and annual data. The projection information of the data is as follows: Albers equal-area cone projection, Central longitude: 110 degrees, First secant: 25 degrees, Second secant: 47 degrees, Coordinates by west: 4000000 meter. File naming rules are as follows: Monthly cumulative ET value file name: heihe-1km_2013m01_eta.tif Heihe represents the heihe river basin, 1km represents the resolution of 1km, 2013 represents the year of 2013, m01 represents the month of January, eta represents the actual evapotranspiration data, and tif represents the data in tif format. Name of quarterly cumulative ET value file: heihe-1km_2013s01_eta.tif Heihe refers to heihe river basin, 1km refers to the resolution of 1km, 2013 refers to 2013, s01 refers to january-march, is the first quarter, eta refers to the actual evapotranspiration data, and tif refers to the data in tif format. Annual cumulative value file name: heihe-1km_2013y_eta.tif Among them, heihe represents heihe river basin, 1km represents the resolution of 1km, 2013 represents the year of 2013, y represents the year, eta represents the actual evapotranspiration data, and tif represents the data in tif format.

0 2020-08-10

Modeling ecohydrological processes and spatial patterns in the Upstream of Heihe River Basin (2000-2012) V2.0

The output data of the distributed eco-hydrological model (GBEHM) of the upper reaches of the black river include the spatial distribution data series of 1-km grid. Region: upper reaches of heihe river (yingxiaoxia), time resolution: month scale, spatial resolution: 1km, time period: 2000-2012. The data include evapotranspiration, runoff depth and soil volumetric water content (0-100cm). All data is in ASCII format. See basan.asc file in the reference directory for the basin space range. The projection parameter of the model result is Sphere_ARC_INFO_Lambert_Azimuthal_Equal_Area.

0 2020-08-10

Great Lakes region of Central Asia - evapotranspiration - 2018

1) It is also called evapotranspiration, which is the sum of leaf emission (transpiration) of plants on the ground and soil evaporation between plants. That is, the water demand of crops in irrigation project. This data set is the monthly data of evapotranspiration in Central Asia; 2) MODIS data, which is calculated by energy balance method; 3) station disk evaporation verification; 4) evapotranspiration is the total water vapor flux transported to the atmosphere by vegetation and the ground as a whole, which mainly includes vegetation transpiration, soil water evaporation and the evaporation of intercepted water or dew. As an important part of energy balance and water cycle, evapotranspiration is not only a shadow The growth, development and yield of ring plants also affect the general circulation of the atmosphere and play a role in regulating the climate

0 2020-08-05

Water Plan of California (2005)

"Hydrologic - ecological - economic process coupling and evolution of heihe river basin governance under the framework of Water rights" (91125018) project data exchange to 5-water-plan-california 1. Data overview: California's water resources plan for 2005 for catchment comparison 2. Data content: the public plan

0 2020-07-31

Dataset of shrub interception and transpiration in Tianlaochi watershed of Qilian Mountain (2012)

This data includes three parts of data, namely shrub water holding experiment, shrub interception experiment and shrub transpiration experiment data. Shrub water holding experiment: select the two shrub types of Caragana jubata and Potentilla fruticosa, respectively pick the branches and leaves of the two vegetation types, weigh their fresh weight, carry out water holding experiment, measure the saturated weight of branches and leaves, dry weight of branches and leaves, dry weight of branches and leaves after completion, and finally obtain the data of branches, leaves and total water holding capacity. Shrub interception experiment: two shrubs, Caragana jubata and Potentilla fruticosa, were also selected and investigated. 30 rain-bearing cups were respectively arranged under the two shrubs. after each rainfall, penetration rainfall was measured and observed from June 1, 2012 to September 10, 2012. Shrub Transpiration Experiment: Potentilla fruticosa on July 14, Caragana jubata on August 5, Salix gilashanica on August 15, 2012. The measurement is made every hour according to the daily weather conditions.

0 2020-07-30

Historical documents of water resources development and utilization over Heihe River Basin (1947-1948)

From 1947 to 1948, the Hexi Water Conservancy Project Corps of the Ministry of Water Resources of the Republic of China compiled the Heihe Mainstream Water Conservancy Project (15 items). This is the first comprehensive engineering plan compiled by the whole basin based on modern hydraulic engineering principles. This batch of planning mainly focus on irrigation projects, taking into account inter-basin water transfer and flood control projects. Most of these projects achieved varying degrees of realization after 1949, but the plan to introduce the Datong River into the Heihe River has never been implemented. The collection of hydrological and socioeconomic data in these documents was mostly completed during the Anti-Japanese War, and was completed by the Gansu Irrigation Works, Plantation and Pasturage Company. It is the earliest and systematic data of the basin. It has irreplaceable value for analyzing and understanding the water conservancy development and socio-economic situation of the Heihe River mainstream during the Republic of China. The main contents of this data include Zhangye, Shandan, Minle, Linze, Gaotai reservoir projects, groundwater interception and irrigation projects, surface runoff irrigation projects, irrigation canal system consolidation projects and other plans.

0 2020-07-28

Simulation results of eco hydrological model in the middle and lower reaches of Heihe river v1.0 (2001-2012)

This project use distributed HEIFLOW Ecological hydrology model (Hydrological - Ecological Integrated watershed - scale FLOW model) of heihe river middle and lower reaches of the eco Hydrological process simulation.The model USES the dynamic land use function, and adopts the land use data of the three phases of 2000, 2007 and 2011 provided by hu xiaoli et al. The space-time range and accuracy of simulation are as follows: Simulation period: 2000-2012, of which 2000 is the model warm-up period Analog step size: day by day Simulation space range: the middle and lower reaches of heihe river, model area 90589 square kilometers Spatial accuracy of the simulation: 1km×1km grid was used on both the surface and underground, and there were 90589 hydrological response units on the surface.Underground is divided into 5 layers, each layer 90589 mobile grid The data set of HEIFLOW model simulation results includes the following variables: (1) precipitation (unit: mm/month) (2) observed values of main outbound runoff in the upper reaches of heihe river (unit: m3 / s) (3) evapotranspiration (unit: mm/month) (4) soil infiltration amount (unit: mm/month) (5) surface yield flow (unit: mm/month) (6) shallow groundwater head (unit: m) (7) groundwater evaporation (unit: m3 / month) (8) supply of shallow groundwater (unit: m3 / month) (9) groundwater exposure (unit: m3 / month) (10) river-groundwater exchange (unit: m3 / month) (11) simulated river flow value of four hydrological stations of heihe main stream (gaoya, zhengyi gorge, senmaying, langxin mountain) (unit: cubic meter/second) The first two variables above are model-driven data, and the rest are model simulation quantities.The time range of all variables is 2001-2012, and the time scale is month.The spatial distributed data precision is 1km×1km, and the data format is tif. In the above variables, if the negative value is encountered, it represents the groundwater excretion (such as groundwater evaporation, groundwater exposure, groundwater recharge channel, etc.).If groundwater depth is required, the groundwater head data can be subtracted from the surface elevation data of the model. In some areas, the groundwater head may be higher than the surface, indicating the presence of groundwater exposure. In addition, the dataset provides: Middle and downstream model modeling scope (format:.shp) Surface elevation of the middle and downstream model (in the format of. Tif) All the above data are in the frame of WGS_1984_UTM_Zone_47N. Take heiflow_v1_et_2001m01.tif as an example to illustrate the naming rules of data files: HEIFLOW: model name V1: data set version 1.0 ET: variable name 2001M01: January 2000, where M represents month

0 2020-07-28

Hydrological data of Heihe River: report set of planning and water distribution of Heihe River Basin

Data investigation method: investigation and collection of Heihe River Basin Authority. The data include: the water distribution plan of the main stream of Heihe River (including Liyuan River) prepared by the Yellow River Water Conservancy Commission of the Ministry of water resources in 1996; the brief report on the water conservancy planning of the main stream of Heihe River prepared by Lanzhou survey and Design Institute of the Ministry of water resources in 1992; the short term management plan of Heihe River Basin approved by the State Council in 2001; the compilation of historical documents of water regulation of Heihe River by the administration of Heihe River Basin in 2008 》In 2014, the research on the reasonable allocation scheme of water resources in Jiuquan Basin of the Taolai River Basin was compiled by the Taolai River Basin Authority.

0 2020-07-28

Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (automatic weather station of Dashalong station, 2019)

This dataset includes data recorded by the Heihe integrated observatory network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Dashalong station from January 1 to December 31, 2019. The site (98.941° E, 38.840° N) was located on a swamp meadow surface in the Longshatan, which is near west of Qilian county, Qinghai Province. The elevation is 3739 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45C; 5 m, north), wind speed and direction profile (010C/020C; 10 m, north), air pressure (PTB110; in the tamper box on the ground), rain gauge (TE525M; 10 m), four-component radiometer (CNR1; 6 m, south), two infrared temperature sensors (SI-111; 6 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (109ss-L; 0, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and soil moisture profile (CS616; -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), and soil moisture (Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2019-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) and Che et al. (2019) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

0 2020-07-25