Modeling ecohydrological processes and spatial patterns in the Upstream of Heihe River Basin (2000-2012) V2.0

The output data of the distributed eco-hydrological model (GBEHM) of the upper reaches of the black river include the spatial distribution data series of 1-km grid. Region: upper reaches of heihe river (yingxiaoxia), time resolution: month scale, spatial resolution: 1km, time period: 2000-2012. The data include evapotranspiration, runoff depth and soil volumetric water content (0-100cm). All data is in ASCII format. See basan.asc file in the reference directory for the basin space range. The projection parameter of the model result is Sphere_ARC_INFO_Lambert_Azimuthal_Equal_Area.

0 2020-08-10

Data set of soil moisture in the lower reaches of Heihe River (2012)

Soil particle size data: clay, silt and sand data of different sizes in sample plots (alpine meadow and grassland); soil moisture: soil moisture content.

0 2020-08-02

Qilian Mountains integrated observatory network: Dataset of Qinghai Lake integrated observatory network (an observation system of meteorological elements gradient of Alpine meadow and grassland ecosystem superstation, 2018)

This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient of the Alpine meadow and grassland ecosystem Superstation from August 31 to December 24, 2018. The site (98°35′41.62″E, 37°42′11.47″N) was located in the alpine meadow and alpine grassland ecosystem, near the SuGe Road in Tianjun County, Qinghai Province. The elevation is 3718m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (PTB110; 3 m), rain gauge (TE525M; 10m of the platform in west by north of tower), four-component radiometer (CNR4; 6m, towards south), two infrared temperature sensors (SI-111; 6 m, towards south, vertically downward), photosynthetically active radiation (PQS1; 6 m, towards south, each with one vertically downward and one vertically upward, soil heat flux (HFP01; 3 duplicates below the vegetation; -0.06 m), soil temperature profile (109; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m), soil moisture profile (CS616; -0.05、-0.10、-0.20、-0.40、-0.80、-1.20、-2.00、-3.00 and -4.00m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), wind direction (WD_3 m, WD_5 m, WD_10 m, WD_15 m, WD_20 m, WD_30m, and WD_40 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm) (℃), soil moisture (Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm) (%, volumetric water content), photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018/8/31 10:30. Moreover, suspicious data were marked in red.

0 2020-07-25

Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (an observation system of meteorological elements gradient of Sidaoqiao superstation, 2018)

This dataset includes data recorded by the Heihe integrated observatory network obtained from an observation system of Meteorological elements gradient of Sidaoqiao Superstation from January 1 to December 31, 2018. The site (101.137° E, 42.001° N) was located on a tamarix (Tamarix chinensis Lour.) surface in the Sidaoqiao, Dalaihubu Town, Ejin Banner, Inner Mongolia Autonomous Region. The elevation is 873 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HC2S3; 5, 7, 10, 15, 20 and 28 m, towards north), wind speed profile (010C; 5, 7, 10, 15, 20 and 28 m, towards north), wind direction profile (020C; 15 m, towards north), air pressure (CS100; in waterproof box), rain gauge (TE525M; 28 m, towards south), four-component radiometer (CNR4; 10 m, towards south), two infrared temperature sensors (SI-111; 10 m, towards south, vertically downward), two photosynthetically active radiation (PQS-1; 10 m, towards south, one vertically upward and one vertically downward), soil heat flux (HFP01SC; 3 duplicates with G1 below the tamarix; G2 and G3 between plants, -0.06 m), a TCAV averaging soil thermocouple probe (installed on 17 July, 2013, TCAV; -0.02, -0.04 m), soil temperature profile (109ss-L; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, -1.6, -2.0 m), and soil moisture profile (install on 7 December, 2013, ML2X; -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, -1.6, -2.0 m). The observations included the following: air temperature and humidity (Ta_5 m, Ta_7 m, Ta_10 m, Ta_15 m, Ta_20 m and Ta_28 m; RH_5 m, RH_7 m, RH_10 m, RH_15 m, RH_20 m and RH_28 m) (℃ and %, respectively), wind speed (Ws_5 m, Ws_7 m, Ws_10 m, Ws_15 m, Ws_20 m and Ws_28 m) (m/s), wind direction (WD_15 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_up and PAR_down) (μmol/ (s m^-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, Ts_160 cm, Ts_200 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, Ms_160 cm, Ms_200 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The precipitation data was wrong during January to June because of the sensor problem; the air pressure data was wrong during July to October because of sensor line broken. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

0 2020-07-25

Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (an observation system of meteorological elements gradient of A’rou Superstation, 2018)

This dataset includes data recorded by the Heihe integrated observatory network obtained from an observation system of Meteorological elements gradient of A’rou Superstation from January 1 to December 31, 2018. The site (100.464° E, 38.047° N) was located on a cold grassland surface in the Caodaban village, A’rou Town, Qilian County, Qinghai Province. The elevation is 3033 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45C; 1, 2, 5, 10, 15 and 25 m, towards north), wind speed profile (010C; 1, 2, 5, 10, 15 and 25 m, towards north), wind direction profile (020C; 2 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 5 m, towards south), four-component radiometer (CNR4; 5 m, towards south), two infrared temperature sensors (SI-111; 5 m, towards south, vertically downward), photosynthetically active radiation (PAR-LITE; 5 m, towards south, vertically upward), soil heat flux (HFP01SC; 3 duplicates, -0.06 m, 2 m in the south of tower), a TCAV averaging soil thermocouple probe (TCAV; -0.02, -0.04 m, 2 m in the south of tower), soil temperature profile (109; 0, -0.02, -0.04, -0.06, -0.1, -0.15, -0.2, -0.3, -0.4, -0.6, -0.8, -1.2, -1.6, -2, -2.4, -2.8 and -3.2 m, 3 duplicates in -0.04 m and -0.1 m), and soil moisture profile (CS616; -0.02, -0.04, -0.06, -0.1, -0.15, -0.2, -0.3, -0.4, -0.6, -0.8, -1.2, -1.6, -2, -2.4, -2.8 and -3.2 m, 3 duplicates in -0.04 m and -0.1 m). The observations included the following: air temperature and humidity (Ta_1 m, Ta_2 m, Ta_5 m, Ta_10 m, Ta_15 m and Ta_25 m; RH_1 m, RH_2 m, RH_5 m, RH_10 m, RH_15 m and RH_25 m) (℃ and %, respectively), wind speed (Ws_1 m, Ws_2 m, Ws_5 m, Ws_10 m, Ws_15 m and Ws_25 m) (m/s), wind direction (WD_2 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/(s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm_1, Ts_4 cm_2, Ts_4 cm_3, Ts_6 cm, Ts_10 cm_1, Ts_10 cm_2, Ts_10 cm_3, Ts_15 cm, Ts_20 cm, Ts_30 cm, Ts_40 cm, Ts_60 cm, Ts_80 cm, Ts_120 cm, Ts_160 cm, Ts_200 cm, Ts_240 cm, Ts_280 cm and Ts_320 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm_1, Ms_4 cm_2, Ms_4 cm_3, Ms_6 cm, Ms_10 cm_1, Ms_10 cm_2, Ms_10 cm_3, Ms_15 cm, Ms_20 cm, Ms_30 cm, Ms_40 cm, Ms_60 cm, Ms_80 cm, Ms_120 cm, Ms_160 cm, Ms_200 cm, Ms_240 cm, Ms_280 cm and Ms_320 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The average soil temperature was rejected during February 16 to March 31 and April 15 to May 20 because of broken of the sensor line; Soil heat flux were wrong occasionally during November to December. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

0 2020-07-25

Siol map based Harmonized World Soil Database (v1.2)

Soil data is important both on a global scale and on a local scale, and due to the lack of reliable soil data, land degradation assessments, environmental impact studies, and sustainable land management interventions have received significant bottlenecks . Affected by the urgent need for soil information data around the world, especially in the context of the Climate Change Convention, the International Institute for Applied Systems Analysis (IIASA) and the Food and Agriculture Organization of the United Nations (FAO) and the Kyoto Protocol for Soil Carbon Measurement and FAO/International The Global Agroecological Assessment Study (GAEZ v3.0) jointly established the Harmonized World Soil Database version 1.2 (HWSD V1.2). Among them, the data source in China is the second national land in 1995. Investigate 1:1,000,000 soil data provided by Nanjing Soil. The resolution is 30 seconds (about 0.083 degrees, 1km). The soil classification system used is mainly FAO-90. The core soil system unit unique verification identifier: MU_GLOBAL-HWSD database soil mapping unit identifier, connected to the GIS layer. MU_SOURCE1 and MU_SOURCE2 source database drawing unit identifiers SEQ-soil unit sequence in the composition of the soil mapping unit; The soil classification system utilizes the FAO-7 classification system or the FAO-90 classification system (SU_SYM74 resp. SU_SYM90) or FAO-85 (SU_SYM85). The main fields of the soil property sheet include: ID (database ID) MU_GLOBAL (Soil Unit Identifier) ​​(Global) SU_SYMBOL soil drawing unit SU_SYM74 (FAO74 classification); SU_SYM85 (FAO85 classification); SU_SYM90 (name of soil in the FAO90 soil classification system); SU_CODE soil charting unit code SU_CODE74 soil unit name SU_CODE85 soil unit name SU_CODE90 soil unit name DRAINAGE (19.5); REF_DEPTH (soil reference depth); AWC_CLASS(19.5); AWC_CLASS (effective soil water content); PHASE1: Real (soil phase); PHASE2: String (soil phase); ROOTS: String (depth classification to the bottom of the soil); SWR: String (soil moisture content); ADD_PROP: Real (specific soil type in the soil unit related to agricultural use); T_TEXTURE (top soil texture); T_GRAVEL: Real (top gravel volume percentage); (unit: %vol.) T_SAND: Real (top sand content); (unit: % wt.) T_SILT: Real (surface layer sand content); (unit: % wt.) T_CLAY: Real (top clay content); (unit: % wt.) T_USDA_TEX: Real (top layer USDA soil texture classification); (unit: name) T_REF_BULK: Real (top soil bulk density); (unit: kg/dm3.) T_OC: Real (top organic carbon content); (unit: % weight) T_PH_H2O: Real (top pH) (unit: -log(H+)) T_CEC_CLAY: Real (cation exchange capacity of the top adhesive layer soil); (unit: cmol/kg) T_CEC_SOIL: Real (cation exchange capacity of top soil) (unit: cmol/kg) T_BS: Real (top level basic saturation); (unit: %) T_TEB: Real (top exchangeable base); (unit: cmol/kg) T_CACO3: Real (top carbonate or lime content) (unit: % weight) T_CASO4: Real (top sulfate content); (unit: % weight) T_ESP: Real (top exchangeable sodium salt); (unit: %) T_ECE: Real (top conductivity). (Unit: dS/m) S_GRAVEL: Real (bottom crushed stone volume percentage); (unit: %vol.) S_SAND: Real (bottom sand content); (unit: % wt.) S_SILT: Real (bottom sludge content); (unit: % wt.) S_CLAY: Real (bottom clay content); (unit: % wt.) S_USDA_TEX: Real (bottom USDA soil texture classification); (unit: name) S_REF_BULK: Real (bottom soil bulk density); (unit: kg/dm3.) S_OC: Real (underlying organic carbon content); (unit: % weight) S_PH_H2O: Real (bottom pH) (unit: -log(H+)) S_CEC_CLAY: Real (cation exchange capacity of the underlying adhesive layer soil); (unit: cmol/kg) S_CEC_SOIL: Real (cation exchange capacity of the bottom soil) (unit: cmol/kg) S_BS: Real (underlying basic saturation); (unit: %) S_TEB: Real (underlying exchangeable base); (unit: cmol/kg) S_CACO3: Real (bottom carbonate or lime content) (unit: % weight) S_CASO4: Real (bottom sulfate content); (unit: % weight) S_ESP: Real (underlying exchangeable sodium salt); (unit: %) S_ECE: Real (underlying conductivity). (Unit: dS/m) The database is divided into two layers, with the top layer (T) soil thickness (0-30 cm) and the bottom layer (S) soil thickness (30-100 cm). For other attribute values, please refer to the HWSD1.2_documentation documentation.pdf, The Harmonized World Soil Database (HWSD V1.2) Viewer-Chinese description and HWSD.mdb.

0 2020-06-03

Observation of water and heat flux in alpine meadow ecosystem —automatic weather station of E’bao station (2015-2016)

The data set contains the meteorological element observation data of ebao station in the upper reaches of heihe hydrometeorological observation network on January 1, 2015 and December 31, 2016.The station is located in ebao town, qilian county, qinghai province.The longitude and latitude of the observation point are 100.9151E, 37.9492N, and the altitude is 3294m.The air temperature and relative humidity sensor is set up at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tipping bucket rain gauge is installed at 10m;The wind speed and direction sensor is mounted at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing south, with the probe facing vertically downward;The soil temperature probe is buried at the surface of 0cm and underground of 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm, 2m south of the meteorological tower.The soil moisture probe is buried underground at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm, 2m south of the meteorological tower.The soil heat flow plates (3 pieces) are successively buried 6cm underground, 2m south of the meteorological tower. Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: wattage/m2), soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: water content by volume, percentage). Processing and quality control of observation data :(1) 144 data per day (every 10min) should be ensured.The four-component radiation and infrared temperature were between October 11, 2015 and November 5, 2015.The instrument of the observation tower was re-adjusted between 11.1 and 11.5, and the data was missing;(2) eliminate the moments with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letters in the data is questionable data;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 2015-9-10 10:30;(6) naming rules: AWS+ site name. For information of hydrometeorological network or site, please refer to Li et al. (2013), and for data processing, please refer to Liu et al. (2011).

0 2020-06-01

Observation of water and heat flux in alpine meadow ecosystem--automatic weather station of Yakou station(2015-2017)

This data set contains the data of meteorological elements observed in the pass station upstream of heihewen meteorological observation network on January 1, 2015 and December 31, 2015.The site is located in da dong shu pass, qilian county, qinghai province.The longitude and latitude of the observation point are 100.2421E, 38.0142N, and the altitude is 4148m.Data including two observation points, all in pass observatory, located about 10 m, a set of continuous observation in 2015 (30 min output), another set for September 18, 2015 in 10 m high pass new stations (10 min), specific include: air temperature, relative humidity sensors at 5 m, toward the north (two sets of observation, 10 min and 30 min output);The barometer is installed in the skid-proof box on the ground (two groups of observation, 10min and 30min output respectively);The tipping bucket rain gauge is installed at 10m;The wind speed and direction sensor is mounted at 10m, facing due north (two groups, 10min and 30min output respectively).The four-component radiometer consists of two observation points, one is installed at the meteorological tower 6m, facing due south (10min output), and the other is installed on the support 1.5m above the ground (30min output).Two infrared thermometers are installed at 6m, facing south, with the probe facing vertically downward;The soil temperature probe was buried at 0cm on the surface and 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground (the two groups were observed for 10min and 30min respectively).The soil moisture probe was buried in the ground at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm (the two groups were observed for 10min and 30min respectively).The soil heat flow plate was buried 6cm underground (observed in two groups, 10min (3 heat flow plates) and 30min (2 heat flow plates)). Observation projects are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:C), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: wattage/m2), soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: water content by volume, percentage). Processing and quality control of observation data :(1) 144 or 48 data per day (every 10min or 30min) should be ensured.The four-component long-wave radiation output of 30min was between January 1, 2015 and January 1, 2015.The observation data was lost between 5.24 and 7.12 after 30min due to the collector problem.(2) eliminate the moments with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letters in the data is questionable data;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: 2015-9-10 10:30;(6) naming rules: AWS+ site name. For information of hydrometeorological network or site, please refer to Li et al. (2013), and for data processing, please refer to Liu et al. (2011).

0 2020-05-29

Dataset of soil texture on the Qinghai-Tibet Plateau (2010)

Soil data are extremely important at both global and local scales, and in the absence of reliable soil data, land degradation assessments, environmental impact studies and sustainable land management interventions are severely hampered。By Soil information data in the urgent need of the World, especially under the background of the convention on climate change, international institute for applied systems analysis (IIASA) and the UN food and agriculture organization (FAO) and the Kyoto protocol on Soil carbon measurement and the United Nations food and agriculture organization (FAO)/international global agriculture ecological assessment (GAEZ v3.0) jointly established under the sponsorship of a new generation of World Soil Database (Harmonized World Soil Database version 1.2) (HWSD V1.2). The 2010 data set of soil texture on the qinghai-tibet plateau was culled from the world soil database.Data format :grid format, projected as WGS84.The main soil classification system used is fao-90.Unique verification identifier of core soil institution unit: Mu_global-hwsd database soil mapping unit identifier that connects GIS layers. MU_SOURCE1 and MU_SOURCE2- source database mapping unit identifiers; SEQ- soil unit sequence in the composition of soil mapping unit; Soil classification system USES fao-7 classification system or fao-90 classification system (SU_SYM74 resp.su_sym90) or fao-85 (SU_SYM85). The main fields of the soil property sheet include: ID(database ID) MU_GLOBAL(soil unit identifier) (global) SU_SYMBOL Soil mapping unit SU_SYM74(FAO74classify ); SU_SYM85(FAO85classify); SU_SYM90(FAO90The soil name in a soil classification system); SU_CODE Soil mapping unit code SU_CODE74 Soil unit name SU_CODE85 Soil unit name SU_CODE90 Soil unit name DRAINAGE(19.5); REF_DEPTH(Soil reference depth); AWC_CLASS(19.5); AWC_CLASS(Soil available water content); PHASE1: Real (The soil phase); PHASE2: String (The soil phase); ROOTS: String (Depth classification of obstacles to the bottom of the soil); SWR: String (Characteristics of soil moisture content); ADD_PROP: Real (A specific soil type in a soil unit that is associated with agricultural use); T_TEXTURE(Topsoil texture); T_GRAVEL: Real (Percentage of aggregate volume on top);( unit:%vol.) T_SAND: Real (Top sand content); ( unit:% wt.) T_SILT: Real (surface silt content);(unit: % wt.) T_CLAY: Real (clay content on top);(unit: % wt.) T_USDA_TEX: Real (top-level USDA soil texture classification);(unit: name) T_REF_BULK: Real (top soil bulk density);(unit: kg/dm3.) T_OC: Real (top organic carbon content);(unit: % weight) T_PH_H2O: Real (top ph) (unit: -log(H+)) T_CEC_CLAY: Real (the cationic exchange capacity of the clay layer at the top);(unit: cmol/kg) T_CEC_SOIL: Real (cation exchange capacity of topsoil) (unit: cmol/kg) T_BS: Real (top basic saturation);(unit: %) T_TEB: Real (top exchange base);(unit: cmol/kg) T_CACO3: Real (top carbonate or lime content) (unit: % weight) T_CASO4: Real (top-level sulfate content);(unit: % weight) T_ESP: Real (top layer exchangeable sodium salt);(unit: %) T_ECE: Real (top-level conductivity).(unit: dS/m) S_GRAVEL: Real (percentage of bottom gravel volume);(unit: % vol.) S_SAND: Real (content of underlying sand);(unit: % wt.) S_SILT: Real (substratum silt content);(unit: % wt.) S_CLAY: Real (clay content in the bottom layer);(unit: % wt.) S_USDA_TEX: Real (USDA underlying soil texture classification);(unit: name) S_REF_BULK: Real (bulk density of underlying soil);(unit: kg/dm3.) S_OC: Real (bottom organic carbon content);(unit: % weight) S_PH_H2O: Real (base ph) (unit: -log(H+)) S_CEC_CLAY: Real (cation exchange capacity of the underlying cohesive soil);(unit: cmol/kg) S_CEC_SOIL: Real (cation exchange capacity of underlying soil) (unit: cmol/kg) S_BS: Real (underlying basic saturation);(unit: %) S_TEB: Real (underlying exchangeable base);(unit: cmol/kg) S_CACO3: Real (content of underlying carbonate or lime) (unit: % weight) S_CASO4: Real (substrate sulfate content);(unit: % weight) S_ESP: Real (underlying exchangeable sodium salt);(unit: %) S_ECE: Real (underlying conductivity).(unit: dS/m) This database is divided into two layers, in which the top layer (T) has a soil thickness of (0-30cm) and the bottom layer (S) has a soil thickness of (30-100cm).。 Refer to the instructions for other attribute values HWSD1.2_documentation.pdf,The Harmonized World Soil Database (HWSD V1.2) Viewer-Chinese description andHWSD.mdb。

0 2020-05-29

HiWATER: WATERNET observation dataset in the upper of Heihe River Basin (2015)

This data set includes the observation data of 25 water net sensor network nodes in Babao River Basin in the upper reaches of Heihe River from January 2015 to December 2015. 4cm and 20cm soil moisture / temperature is the basic observation of each node; some nodes also include 10cm soil moisture / temperature, surface infrared radiation temperature, snow depth and precipitation observation. The observation frequency is 5 minutes. The data set can be used for hydrological simulation, data assimilation and remote sensing verification. For details, please refer to "2015 data document 20160501. Docx of water net of Babao River in the upper reaches of Heihe River"

0 2020-05-03