Earthquake Catalogue with M≥5 in Pan-Third Pole since 1960

The Pan-Third Polar region has strong seismic activity, which is driven by the subduction and collision of the Indian plate, the Arab plate and the Eurasian plate. 18806 earthquakes with Magnitude 5 or larger have occurred in Pan-Third Polar region (north latitude 0-56 degrees and east longitude 43-139 degrees) since 1960. Among them, 4 earthquakes with Magnitude 8 or larger, 187 earthquakes with Magnitude 7.0-7.9, 1625 earthquakes with Magnitude 6.0-6.9 and 16990 earthquakes with Magnitude 5.0-5.9 have occurred. Earthquakes occurred mainly in the foothills of the India-Myanmar Mountains, the Himalaya Mountains, the Sulaiman Mountains, where the India Plate collided with the Eurasian plate, and the Zagros Mountains where the Arab plate collided with the Eurasian plate.

0 2020-04-07

Seismic catalogue of east China (2300 BC-2500 AD)

The data includes earthquakes at various levels across the country from 2300 BC to 2005 AD. There are a total of more than 330,000 catalogs, each of which includes earthquake time, epicenter longitude, epicenter latitude, focal depth, positioning accuracy, and magnitude. This data was first released by the National Seismological Bureau. The China Earthquake Catalog contains a Mapinfo layer (Total_0510Time) and files with the extensions .TAB, .MAP, .DAT, .ID. Their functions are as follows: TAB: the main file, including the table data structure and entity data format fields; MAP: a geographic data file containing map objects; ID: the index file of the graphic object file (MAP); DAT: Form data file.

0 2020-03-28

Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon

This data set is from the paper: Ding, L., Spicer, R.A., Yang, J., Xu, Q., Cai, F.L., Li, S., Lai, q.z., Wang, H.Q., Spicer, t.e.v., Yue, Y.H., Shukla, A., Srivastava, g., Khan, M.A., BERA, S., and Mehrotra, R. 2017. Quantifying the rise of the Himalaya origin and implications for the South Asian monsoon. Geography, 45:215-218. This achievement is part of a series of research results of paleoaltitude carried out by Ding Lin' team. We reconstruct the rise of a segment of the southern flank of the Himalaya-Tibet orogen, to the south of the Lhasa terrane, using a paleoaltimeter based on paleoenthalpy encoded in fossil leaves from two new assemblages in southern Tibet (Liuqu and Qiabulin) and four previously known floras from the Himalaya foreland basin. U-Pb dating of zircons constrains the Liuqu flora to the latest Paleocene (ca. 56 Ma) and the Qiabulin flora to the earliest Miocene (21–19 Ma). The proto-Himalaya grew slowly against a high (~4 km) proto–Tibetan Plateau from ~1 km in the late Paleocene to ~2.3 km at the beginning of the Miocene, and achieved at least ~5.5 km by ca. 15 Ma. Contrasting precipitation patterns between the Himalaya-Tibet edifice and the Himalaya foreland basin for the past ~56 m.y. show progressive drying across southern Tibet, seemingly linked to the uplift of the Himalaya orogen.

0 2020-03-24

Geological map at 1:50000 of Hulugou catchment (2012)

Sketch map of 1:50000 geological map of hulugou small watershed in 2012, hulugou watershed is composed of Quaternary loose stratum and pre Cenozoic bedrock stratum. The pores of the bedrock stratum are mainly fissures and covered with thin residual slope deposits. The Pleistocene alluvial proluvial sand gravel layer (q3al + PL) above the piedmont plain is dominant. The loose formation in the front of the glacier is Holocene moraine gravel layer (q4gl), which is distributed under the modern cirque and forms lateral moraine and final moraine dike (ridge).

0 2020-03-11

WATER: Dataset of the total station measurements at the super site around the Dayekou Guantan forest station

The data set is based on the geodetic coordinate data and other auxiliary data of the corner points of 16 subsamples of super sample plots, the setting points of lidar base station of the foundation and the base points of each tree trunk measured by the total station. The data acquisition time of total station is from June 3, 2008 to June 12, 2008, which is divided into two groups. One total station is used respectively, with the models of topcon602 and topcon7002. A total of 1468 Picea crassifolia trees in the super sample plot were measured, and all the corner points of the sub sample plot and the top points of the stake set on the base station of lidar were located. These positioning results are the main data content of the dataset. In addition, on June 3, 2008, June 4, 2008, June 6, 2011, the differential GPS z-max was used to locate all the stake vertices. By manually measuring the height of each stake, the height of the surface under the stake was calculated, and finally the three-dimensional coordinate position of the surface of each tree and the topographic map of super sample plot were generated. These data constitute the secondary data of the dataset. This data set can provide detailed ground observation data for the establishment of real three-dimensional forest scene, the development and correction of various three-dimensional forest remote sensing models, and ground validation data for the extraction of airborne lidar forest parameters.

0 2020-03-10

WATER: Dataset of differential global position system (DGPS) measurements at the super site around the Dayekou Guantan forest station (2008)

The super sample plot is composed of 16 sub samples. In order to locate each tree in the sample plot and facilitate the location of the base station point for ground-based radar observation, it is necessary to measure the geodetic coordinates of the sub sample plot corner point and the preset base station point for ground-based radar. The location of these points and each tree is measured by total station. Because the total station measures relative coordinates, in order to obtain geodetic coordinates, it is necessary to use differential GPS (DGPS) to measure at least one reference point around the super sample plot with high precision. In addition, we also use DGPS to observe the geodetic coordinates of all corner points of the subsample, and the measurement results can form the verification of the total station measurement results. The data set is based on all the positioning results measured by DGPS, excluding the positioning results of total station. The measurement time is from June 1 to 13, 2008, using the French Thales differential GPS measurement system, model z-max. The observation method is to use two GPS receivers for synchronous static measurement, one is the base station, which is set next to Gansu Water Conservation Forest Research Institute (the WGS geodetic coordinate of the base station is a first-class benchmark introduced from Zhangye City through multi station observation using z-max). The other is the mobile station, which is placed on the observation point of super sample plot. The observation time of each point varies from 10, 15, 20, 25, 30 minutes. The specific time depends on the satellite signal. The signal difference time is measured for several minutes more. Finally, the final positioning result is obtained by using the processing software of the instrument. WGS geodetic coordinate system is used for the positioning results. Firstly, six temporary control points were measured in the open area next to the super sample plot, providing reference points for the total station to measure the position of trees in the super sample plot. Then, flow stations were set up on each corner of 16 sub plots of super plot, and the coordinates of corner points were measured, and 41 observation points were obtained. The dataset stores the positioning results of these 47 points. This data is only for project use and not for external sharing.

0 2020-03-09

Lithologic data of shallow drilling formation in the middle reaches of Heihe River

Seven boreholes were drilled in the middle reaches of Heihe River. According to the sedimentary characteristics, the lithology of different layers of each borehole was described.

0 2020-03-08

Glacial lake inventory of High Mountain Asia

The data set integrated glacier inventory data and 426 Landsat TM/ETM+/OLI images, and adopted manual visual interpretation to extract glacial lake boundaries within a 10-km buffer from glacier terminals using ArcGIS and ENVI software, normalized difference water index maps, and Google Earth images. It was established that 26,089 and 28,953 glacial lakes in HMA, with sizes of 0.0054–5.83 km2, covered a combined area of 1692.74 ± 231.44 and 1955.94 ± 259.68 km2 in 1990 and 2018, respectively.The current glacial lake inventory provided fundamental data for water resource evaluation, assessment of glacial lake outburst floods, and glacier hydrology research in the mountain cryosphere region

0 2019-12-20

Paleomagnetic data bearing on the Mesozoic deformation of the Qiangtang Block: Implications for the evolution of the Paleo- and Meso-Tethys

Paleomagnetism has played an important role in quantifying the Mesozoic evolution of “Proto-Tibet”. We present here our recent paleomagnetic data from five Middle-Upper Jurassic sedimentary sequences of the eastern North Qiangtang Terrane at Yanshiping. The new paleomagnetic results from 99 sites, 1,702 samples and reveal paleopoles at 79.1°N/306.9°E (dp=3.9°, dm=6.3°) for Quemo Co Fm, 68.9°N/313.8°E (dp=2.1°, dm=3.7°) for Buqu Fm, 66.1°N/332.1°E (dp=2.7°, dm=4.6°) for Xiali Fm, 72.4°N/318.6°E (dp=3.9°, dm=6.7°) for Suowa Fm, and 76.9°N/301.1°E (dp=7.9°, dm=13.2°) for Xueshan Fm, respectively. These results indicate that Yanshiping experienced latitudinal changes from ~24.5° N to ~22.0º N over the time interval 171.2 - <157.5 Ma, accompanied by clockwise (CW) rotations of ~19.8±9.4º between ~171.2 and 161.7 Ma and counterclockwise (CCW) rotations of ~15.4±13.4º between ~161.7 and <157.2 Ma. We attribute the change in rotation sense at approximately ~161.7 Ma to the initial collision of the Lhasa and Qiangtang terranes. Using this and other paleomagnetic data from the Lhasa, Qiangtang and Tarim terranes, as well as other geological evidence, such as tectonism-related sedimentary sequences, volcanism, and HP metamorphism, we propose a new conceptual evolution model for the Mesozoic QT and Tethyan Oceans, including 3 intra-continental collisions (South-North Qiangtang, Qiangtang-Songpan-Ganzi and Lhasa-Qiangtang) and post collisional extensions.

0 2019-12-19

Magnetic stratigraphy results of a 300-meter-thick Oligocene strata borehole in the Qujing region, Yunnan

The Qujing Basin is located in the eastern part of Yunnan Province, is a long and narrow rift basin with north-south trend in shape. The Basin preserves thick and continuous Cenozoic sediments, which can be divided into Xiaotun Formation, Caijiachong Formation and Ciying Formation from bottom to top. These thick Cenozoic sediments deposited are ideal achieves used to explore the history of local deformation process affected by the collision of the Indian-Eurasian plate as well as the evolution of the Indian monsoon in the Cenozoic. Previously, the macrochronological framework of these stratum was mainly defined by biological fossils, but high-resolution chronology with precise chronological control has not been carried out, thus limiting the understanding of tectonic evolution and climate and environmental changes since the Eocene in Yunnan. Based on the paleomagnetic test performed on the 300-meters thick boreholes drilled in the Qujing Basin as well as the U-Pb age (35.49 ± 0.78 Ma) results of volcanic tuff zircon collected from the top of the Caijiachong Formation, we then present the preliminary results of a precise chronological controlled high-resolution magnetic chronology record.

0 2019-12-05