HiWATER: WATERNET observation dataset in 2015 in the midstream of the Heihe River Basin

This data set includes the 2015 observation data of 9 water net nodes in the 5.5km × 5.5km observation matrix (red box in the thumbnail) of Yingke / Daman irrigation area in the middle reaches of Heihe River. The nine nodes contain 4cm and 10cm two-layer hydro probe II probes to observe the main variables such as soil moisture, soil temperature, conductivity and complex permittivity; the si-111 infrared temperature probe is set up at 4m height to observe the surface radiation infrared temperature of the underlying surface. The observation time frequency is 5 minutes. This data set can provide spatiotemporal continuous observation data set for remote sensing estimation of key water and heat variables of heterogeneous surface, remote sensing authenticity test, ecological hydrology research, irrigation optimization management and other research.

0 2020-10-13

Field soil survey and analysis data in the upper reaches of Heihe River Basin (2013-2014)

The dataset is the field soil measurement and analysis data of the upstream of Heihe River Basin from 2013 to 2014, including soil particle analysis, water characteristic curve, saturated water conductivity, soil porosity, infiltration analysis, and soil bulk density I. Soil particle analysis 1. The soil particle size data were measured in the particle size laboratory of the Key Laboratory of the Ministry of Education, West Ministry of Lanzhou University.The measuring instrument is Marvin laser particle size meter MS2000. 2. Particle size data were measured by laser particle size analyzer.As a result, sample points with large particles cannot be measured, such as D23 and D25 cannot be measured without data.Plus partial sample missing. Ii. Soil moisture characteristic curve 1. Centrifuge method: The unaltered soil of the ring-cutter collected in the field was put into the centrifuge, and the rotor weight of each time was measured with the rotation speed of 0, 310, 980, 1700, 2190, 2770, 3100, 5370, 6930, 8200 and 11600 respectively. 2. The ring cutter is numbered from 1 to the back according to the number. Since three groups are sampled at different places at the same time, in order to avoid repeated numbering, the first group is numbered from 1, the second group is numbered from 500, and the third group is numbered from 1000.It's consistent with the number of the sampling point.You can find the corresponding number in the two Excel. 3. The soil bulk density data in 2013 is supplementary to the sampling in 2012, so the data are not available at every point.At the same time, the soil layer of some sample points is not up to 70 cm thick, so the data of 5 layers cannot be taken. At the same time, a large part of data is missing due to transportation and recording problems.At the same time, only one layer of data is selected by random points. 4. Weight after drying: The drying weight of some samples was not measured due to problems with the oven during the experiment. 3. Saturated water conductivity of soil 1. Description of measurement method: The measurement method is based on the self-made instrument of Yiyanli (2009) for fixing water hair.The mariot bottle was used to keep the constant water head during the experiment.At the same time, the measured Ks was finally converted to the Ks value at 10℃ for analysis and calculation.Detailed measurement record table refer to saturation conductivity measurement description.K10℃ is the data of saturated water conductivity after conversion to 10℃.Unit: cm/min. 2. Data loss explanation: The data of saturated water conductivity is partly due to the lack of soil samples and the insufficient depth of the soil layer to obtain the data of the 4th or 5th layer 3. Sampling time: July 2014 4. Soil porosity 1. Use bulk density method to deduce: according to the relationship between soil bulk density and soil porosity. 2. The data in 2014 is supplementary to the sampling in 2012, so the data are not available at every point.At the same time, the soil layer of some sample points is not up to 70 cm thick, so the data of 5 layers cannot be taken. At the same time, a large part of data is missing due to transportation and recording problems.At the same time, only one layer of data is selected by random points. 5. Soil infiltration analysis 1. The infiltration data were measured by the "MINI DISK PORTABLE specific vector INFILTROMETER".The approximate saturation water conductivity under a certain negative pressure is obtained.The instrument is detailed in website: http://www.decagon.com/products/hydrology/hydraulic-conductivity/mini-disk-portable-tension-infiltrometer/ 2.D7 infiltration tests were not measured at that time because of rain. Vi. Soil bulk density 1. The bulk density of soil in 2014 refers to the undisturbed soil taken by ring cutter based on the basis of 2012. 2. The soil bulk density is dry soil bulk density, which is measured by drying method.The undisturbed ring-knife soil samples collected in the field were kept in an oven at 105℃ for 24 hours, and the dry weight of the soil was divided by the soil volume (100 cubic centimeters). 3. Unit: G /cm3

0 2020-10-13

Soil observation and leaf area index and aboveground biomass of maize sampling points in Yingke Daman area of Heihe River Basin (2012)

The experimental data of Yingke Daman in Heihe River Basin is supported by the key fund project of Heihe River plan, "eco hydrological effect of agricultural water saving in Heihe River Basin and multi-scale water use efficiency evaluation". Including: soil bulk density, soil water content, soil texture, corn sample biomass, cross-section flow, etc Data Description: 1. Sampling location of Lai and aboveground biomass: Yingke irrigation district; sampling time: May 2012 to September 2012; Lai and aboveground biomass of maize were measured by canopy analyzer (lp-80), and aboveground biomass was measured by sampling drying method; sample number: 16. 2. Soil texture: Sampling location: Yingke irrigation district and Shiqiao Wudou Er Nongqu farmland in Yingke irrigation district; soil sampling depth is 140 cm, sampling levels are 0-20 cm every 10 cm, 20-80 cm every 20 cm, 80-140 cm every 30 cm; sampling time: 2012; measurement method: laboratory laser particle size analyzer; sample number: 38. 3. Soil bulk density: Sampling location: Yingke irrigation district and Daman irrigation district; sampling depth of soil bulk density is 100 cm, sampling levels are 0-50 cm and 50-100 cm respectively; sampling time: 2012; measurement method: ring knife method; number of sample points: 34. 4. Soil moisture content: this data is part of the monitoring content of hydrological elements in Yingke irrigation district. The specific sampling location is: Shiqiao Wudou Er Nongqu farmland in Yingke Irrigation District, planting corn for seed production; soil moisture sampling depth is 140 cm, sampling levels are 0-20 cm every 10 cm, 20-80 cm every 20 cm, 80-140 cm every 30 cm Methods: soil drying method and TDR measurement; sample number: 17. 5. Cross section flow: Sampling location: the farmland of Wudou Er Nong canal in Shiqiao, Yingke irrigation district; measure the flow velocity, water level and water temperature of different canal system sections during each irrigation, record the time and calculated flow, monitor once every 3 hours until the end of irrigation; sampling time: 2012.5-2012.9; measurement method: Doppler ultrasonic flow velocity meter (hoh-l-01, Measurement times: Yingke irrigation data of four times.

0 2020-10-13

Soil texture dataset of hwsd in Qaidam River basin (2009)

The dataset is the HWSD Soil texture data set of the qaidam basin. The data is from the Harmonized World Soil Database (HWSD) constructed by the United Nations food and agriculture organization (FAO) and Vienna institute for international applied systems (IIASA), which was released in version 1.1 on March 26, 2009.The data resolution is 1km.The main soil classification system adopted is fao-90.The main fields in the soil property list include SU_SYM90 (soil name in the FAO90 soil classification system) SU_SYM85(FAO85 classification) T_TEXTURE(top layer soil texture) (19.5);ROOTS: String(deep classification of obstacles to the bottom of the soil);SWR: String (soil moisture content characteristics);ADD_PROP: Real (specific type of soil in a soil unit related to an agricultural use);T_GRAVEL: Real (percent by volume);T_SAND: Real;T_SILT: Real (silt content);T_CLAY: Real;T_USDA_TEX: Real (USDA soil texture classification);T_REF_BULK: Real (soil bulk density);T_OC: Real (organic carbon content);T_PH_H2O: Real T_CEC_CLAY: Real;T_CEC_SOIL: Real (cation exchange capacity of soil) T_BS: Real (basic saturation);T_TEB: Real (commutative base);T_CACO3: Real (carbonate or lime content) T_CASO4: Real (sulfate content);T_ESP: Real (exchangeable sodium);T_ECE: Real.The attribute field beginning with T_ represents the upper soil attribute (0-30cm), and the attribute field beginning with S_ represents the lower soil attribute (30-100cm) (FAO 2009).This data can provide model input parameters for earth system modelers, and agricultural perspectives can be used to study eco-agricultural zoning, food security and climate change.

0 2020-10-10

A long term spatially and temporally consistent global daily soil moisture dataset derived from AMSR-E/2 (2002-2019)

This dataset contains 18 years (2002-2019) global spatio-temporal consistent surface soil moisture . The resolution is 36 km at daily scale, and the data unit is m3 / m3. This dataset adopts the soil moisture neural network retrieval algorithm developed by Yao et al. (2017). This study transfers the merits of SMAP to AMSR-E/2 through using an Artificial Neural Network (ANN) in which SMAP standard SSM products serve as training targets with AMSR-E/2 brightness temperature (TB) as input. Finally, long term soil moisture data are output. The accuracy is about 5% volumetric water content. (evaluation accuracy of 14 dense ground network globally.)

0 2020-10-09

Digital soil mapping dataset of soil organic carbon content in the Heihe River Basin (2012)

According to the global soil map. Net standard, the 0-1m soil depth is divided into 5 layers: 0-5cm, 5-15cm, 15-30cm, 30-60cm and 60-100cm. According to the principle of soil landscape model, the spatial distribution data products of soil organic carbon content in different layers are produced by using the digital soil mapping method. The source data of this data set comes from the soil profile data integrated by the major research plan integration project of Heihe River Basin (soil data integration and soil information product generation of Heihe River Basin, 91325301). Scope: Heihe River Basin; Projection: WGS · 1984 · Albers; Spatial resolution: 100M; Data format: TIFF; Dataset content: hh_soc_layer1.tif: 0-5cm soil organic carbon content; hh_soc_layer2.tif: 5-15cm soil organic carbon content; hh_soc_layer3.tif: 15-30cm soil organic carbon content; hh_soc_layer4.tif: 30-60cm soil organic carbon content; hh_soc_layer5.tif: 60-100cm soil organic carbon content;

0 2020-09-30

pH of representative samples in the Heihe River Basin

The data set includes soil pH data of representative soil samples collected from July 2012 to August 2013 in the Heihe River Basin. The first soil survey was conducted in 2012. After the representativeness evaluation of collected samples, we conducted an additional sampling in 2013. These samples are representative enough to represent the soil variation in the Heihe River Basin, of which the soil variation in each landscape could be accounted for. The sampling depths in field refer to the sampling specification of Chinese Soil Taxonomy, in which soil samples were taken from genetic soil horizons.

0 2020-09-30

Daily 0.01°×0.01° Land Surface Soil Moisture Dataset of the Qinghai-Tibet Plateau (SMHiRes, V1)

This dataset contains daily 0.01°×0.01° land surface soil moisture products in the Qinghai-Tibet Plateau in 2005, 2010, 2015, 2017, and 2018. The dataset was produced by utilizing the multivariate statistical regression model to downscale the “SMAP Time-Expanded 0.25°×0.25° Land Surface Soil Moisture Dataset in the Qinghai-Tibet Plateau (SMsmapTE, V1)”. The auxiliary datasets participating in the multivariate statistical regression include GLASS Albedo/LAI/FVC, 1km all-weather surface temperature data in western China by Ji Zhou, and Lat/Lon information.

0 2020-09-25

Land Surface Soil Moisture Dataset of SMAP Time-Expanded Daily 0.25°×0.25° over Qinghai-Tibet Plateau Area (SMsmapTE, V1)

This dataset contains land surface soil moisture products with SMAP time-expanded daily 0.25°×0.25°in Qinghai-Tibet Plateau Area. The dataset was produced based on the Random Forest method by utilizing passive microwave brightness temperature along with some auxiliary datasets. The temporal resolution of the product in 1980,1985,1990,1995 and 2000 is monthly, by using SMMR, SSM/I, and SSMIS brightness temperature from 19 GHz V/H and 37 GHz V channels. The temporal resolution of the product between June 20, 2002 and Dec 30, 2018 is daily, by utilizing AMSR-E and AMSR2 brightness temperature from 6.925 GHz V/H, 10.65 GHz V/H, and 36.5 GHz V channels. The auxiliary datasets participating in the Random Forest training include the IGBP land cover type, GTOPO30 DEM, and Lat/Lon information.

0 2020-09-25

Simulated soil temperature and moisture in the Babao River Basin

The ground temperature, moisture and ice content at various depth (0 cm, 4 cm, 10 cm, 20 cm, 40 cm, 80 cm, 120 cm, 160 cm, 240 cm, 400 cm, 600 cm, 900 cm, 1200 cm, 1400 cm, 1500 cm) was generated through the SHAW model, which was evaluated by observations at AWS stations and WSN in the study area and could be used in research relevant on soil freezing and thawing.

0 2020-08-24