Moderate resolution MODIS river lake ice cover dataset in high latitude region of northern hemisphere (2002-2018)

The medium-resolution MODIS river and lake ice phenology data set in the high latitudes of the northern hemisphere from 2002 to 2019 is based on the Normalized Difference Snow Index (NDSI) data of the Moderate Resolution Imaging Spectroradiometer(MODIS). Daily lake iceextent and coverage under clear-sky conditions was examined byemploying the conventional SNOWMAP algorithm, and thoseunder cloud cover conditions were re-determined using the temporal and spatial continuity of lake surface conditions througha series of steps.The lake ice phenology information obtained in this dataset was highly consistent with that from passive microwave data at an average correlation coefficient of 0.91 and an RMSE value varying from 0.07 to 0.13.

0 2020-08-05

30 m resolution lake ice type data set of Qinghai Tibet Plateau, Siberia and alaga river lake region, 2015-2019

Lake ice is an important parameter of Cryosphere. Its change is closely related to climate parameters such as temperature and precipitation, and can directly reflect climate change. Therefore, lake ice is an important indicator of regional climate parameter change. However, due to the poor natural environment and sparsely populated area, it is difficult to carry out large-scale field observation, The spatial resolution of 10 m and the temporal resolution of better than 30 days were used to monitor the changes of different types of lake ice, which filled in the blank of observation. The hmrf algorithm is used to classify different types of lake ice. The distribution of different types of lake ice in some lakes with an area of more than 25km2 in the three polar regions is analyzed by time series to form the lake ice type data set. The distribution of different types of lake ice in these lakes can be obtained. The data includes the sequence number of the processed lake, the year and its serial number in the time series, and vector The data set includes the algorithm used, sentinel-1 satellite data, imaging time, polar region, lake ice type and other information. Users can determine the change of different types of lake ice in time series according to the vector file.

0 2020-08-05

Glacial Runoff Dataset of Five Upstreams in the Tibetan Plateau in 1971-2015

The coverage time of glacier runoff data set in the five major river source areas of the Qinghai Tibet Plateau is from 1971 to 2015, and the time resolution is year by year, covering the source areas of five major rivers (Yellow River source, Yangtze River source, Lancang River source, Nu River source, Yarlung Zangbo River source). The data is based on multi-source remote sensing and measured data. The glacier runoff data is simulated by using the daily scale meteorological data of five major river source areas and their surrounding meteorological stations, the global vegetation products of umd-1km, the igbp-dis soil database, the first and second glacier catalogue data, and the distributed hydrological model vic-cas coupled with the glacier module is used to simulate the glacier runoff data. The simulation results are verified by the site measured data to enhance the quality control. Data indicators include: Glacier runoff (rate of glacier runoff:%), total runoff (mm / a), snow runoff (rate of snow runoff:%), and rainfall runoff rate (rainfall runoff rate:%).

0 2020-08-05

Long-term series of daily global snow depth (1979-2017)

The “Long-term series of daily global snow depth” was produced using the passive microwave remote sensing data. The temporal range is 1979~2017, and the coverage is the global land. The spatial resolutions is 25,067.53 m and the temporal resolution is daily. A dynamic brightness temperature gradient algorithm was used to derive snow depth. In this algorithm, the spatial and temporal variations of snow characteristics were considered and the spatial and seasonal dynamic relationships between the temperature difference between 18 GHz and 36 GHz and the measured snow depth were established. The long-term sequence of satellite-borne passive microwave brightness temperature data used to derive snow depth came from three sensors (SMMR, SSM/I and SSMI/S), and there is a certain system inconsistency among them. So, the inter-sensor calibration was performed to improve the temporal consistency of these brightness temperature data before snow depth derivation. The accuracy analysis shows that the relative deviation of Eurasia snow depth data is within 30%. The data are stored as a txt file every day, each file is a 1383*586 snow depth matrix, and each snow depth represents a 25,067.53m* 25,067.53m grid. The projection of this data is EASE-Grid, and following is the file header which describes the projection detail. File header: ncols 1383 nrows 586 xllcorner -17334193.54 yllcorner -7344787.75 cellsize 25,067.53 NODATA_value -1

0 2020-08-03

Meteorological, albedo and evapotranspiration data set of hulugou shrub experimental area in the upper reaches of Heihe River (2012-2014)

The data set is the meteorological and observational data of hulugou shrub experimental area in the upper reaches of Heihe River, including meteorological data, albedo data and evapotranspiration data under shrubs. 1. Meteorological data: Qilian station longitude: 99 ° 52 ′ E; latitude: 38 ° 15 ′ n; altitude: 3232.3m, scale meteorological data from January 1, 2012 to December 31, 2013. Observation items include: temperature, humidity, vapor pressure, net radiation, four component radiation, etc. The data are daily scale data, and the calculation period is 0:00-24:00 2. Albedo: daily surface albedo data from January 1, 2012 to July 3, 2014, including snow and non snow periods. The measuring instrument is the radiation instrument on the 10m gradient tower in hulugou watershed. Among them, the data from August 4 to October 2, 2012 was missing due to instrument circuit problems, and the rest data quality was good 3. Evapotranspiration: surface evapotranspiration data of Four Typical Shrub Communities in hulugou watershed. The observation period is from July 18 to August 5, 2014, which is the daily scale data. The data include precipitation data, evaporation and infiltration data observed by lysimeter. The data set can be used to analyze the evapotranspiration data of alpine shrubs and forests. The evapotranspiration of grassland under canopy was measured by a small lysimeter with a diameter of 25 cm and a depth of 30 cm. Two lysimeters were set up in each shrub plot, and one lysimeter was set for each shrub in transplanting experiment. The undisturbed undisturbed soil column with the same height as the barrel is placed in the inner bucket, and the outer bucket is buried in the soil. During the embedding, the outer bucket shall be 0.5-1.0 cm higher than the ground, and the outer edge of the inner barrel shall be designed with a rainproof board about 2.0 cm wide to prevent surface runoff from entering the lysimeter. Lysimeter was set up in the nearby meteorological stations to measure grassland evapotranspiration, and a small lysimeter with an inner diameter of 25 cm and a depth of 30 cm was also set up in the sample plot of Picea crassifolia forest to measure the evaporation under the forest. All lysimeters are weighed at 20:00 every day (the electronic balance has a sensing capacity of 1.0 g, which is equivalent to 0.013 mm evaporation). Wind proof treatment should be taken to ensure the accuracy of measurement. Data processing method: evapotranspiration is mainly calculated by mass conservation in lysimeter method. According to the design principle of lysimeter lysimeter, evapotranspiration is mainly determined by the quality difference in two consecutive days. Since it is weighed every day, it is calculated by water balance.

0 2020-07-31

Basic datasets of Urumqi river basin in Chinese Cryospheric Information System

Chinese Cryospheric Information System is a comprehensive information system for the management and analysis of Chinese cryospheric data. The establishment of Chinese Cryospheric Information System is to meet the needs of earth system science, and provide parameters and verification data for the development of response and feedback models of permafrost, glacier and snow cover to global changes under GIS framework. On the other hand, the system collates and rescues valuable cryospheric data to provide a scientific, efficient and safe management and analysis tool. Chinese Cryospheric Information System contains three basic databases of different research regions. The basic database of Urumqi river basin is one of three basic databases, which covers the Urumqi river basin in tianshan mountain, east longitude 86-89 °, and north latitude 42-45 °, mainly containing the following data: 1. Cryospheric data.Include: Distribution of glacier no. 1 and glacier no. 2; 2. Natural environment and resources.Include: Terrain digital elevation: elevation, slope, slope direction; Hydrology: current situation of water resource utilization;Surface water; Surface characteristics: vegetation type;Soil type;Land resource evaluation map;Land use status map; 3. Social and economic resources: a change map of human action; Please refer to the documents (in Chinese): "Chinese Cryospheric Information System design. Doc" and "Chinese Cryospheric Information System data dictionary. Doc".

0 2020-07-31

Moraine distributions in the upstream of the Heihe River (2013-2014)

From 2013 to 2014, the Glacial Geomorphology of the upper reaches of Heihe River in the late Quaternary was investigated and sampled. Based on the field investigation and remote sensing image, the distribution map of moraine at different levels near the ridge of the upper reaches of the Bailang river was obtained.

0 2020-07-30

The mean annual ground temperature (MAGT) and permafrost thermal stability dataset over Tibetan Plateau for 2005-2015

Data scarcity is a major obstacle for high-resolution mapping of permafrost on the Tibetan Plateau (TP). This study produces a new permafrost stability distribution map for the 2010s (2005-2015) derived from the predicted mean annual ground temperature (MAGT) at a depth of zero annual amplitude (10 - 25 m) by integrating remotely sensed freezing degree-days and thawing degree-days, snow cover days, leaf area index, soil bulk density, high-accuracy soil moisture data, and in situ MAGT measurements from 237 boreholes on the TP by using an ensemble learning method that employs a support vector regression (SVR) model based on distance-blocked resampling training data with 200 repetitions. Validation of the new permafrost map indicates that it is probably the most accurate of all available maps at present. This map shows that the total area of permafrost on the TP, excluding glaciers and lakes, is approximately 115.02 (105.47-129.59) ✖104 km2. The areas corresponding to the very stable, stable, semi-stable, transitional, and unstable types are 0.86✖104 km2, 9.62✖104 km2, 38.45✖104 km2, 42.29✖104 km2, and 23.80✖104 km2, respectively. This new map is of fundamental importance for engineering planning and design, ecosystem management, and evaluation of the permafrost change in the future on the TP as a baseline.

0 2020-07-30

The second glacier inventory dataset of China (version 1.0) (2006-2011)

China's second glacier inventory uses the high-resolution Landsat TM/ETM+ remote sensing satellite data as the main glacier boundary data source and extracts the data source with the latest global digital elevation model, SRTM V4, as the glacier attribute, using the current international ratio threshold segmentation method to extract the glacier boundary in bare ice areas. The ice ridge extraction algorithm is developed to extract the glacier ice ridge, and it is used for the segmentation of a single glacier. At the same time, the international general algorithm is used to calculate the glacier attributes, so that the vector data and attribute data that contain the glacier information of the main glacier regions in west China are obtained. Compared with some field GPS field measurement data and higher resolution remote sensing images (such as from QuickBird and WorldView), the glacial vector data in the second glacier inventory data set of China have higher positioning accuracy and can meet the requirements for glacial data in national land, water conservancy, transportation, environment and other fields. Glacier inventory attributes: Glc_Name, Drng_Code, FCGI_ID, GLIMS_ID, Mtn_Name, Pref_Name, Glc_Long, Glc_Lati, Glc_Area, Abs_Accu, Rel_Accu, Deb_Area, Deb_A_Accu, Deb_R_Accu, Glc_Vol_A, Glc_Vol_B, Max_Elev, Min_Elev, Mean_Elev, MA_Elev, Mean_Slp, Mean_Asp, Prm_Image, Aux_Image, Rep_Date, Elev_Src, Elev_Date, Compiler, Verifier. For a detailed data description, please refer to the second glacier inventory data description.

0 2020-07-29

Study on the process and effect of surface water and groundwater in permafrost area of the upper reaches of Heihe river (2015)

In the permafrost area of the upper reaches of Heihe River, 11 numbered typical boreholes are selected, and the thickness values of permafrost and seasonal permafrost are calculated by the temperature interpolation of boreholes. The 0 degree isothermal surface is set as the bottom plate of permafrost and seasonal permafrost. The data include borehole number, longitude and latitude, thickness of frozen soil and type of frozen soil.

0 2020-07-28