• 黑河流域生态水文综合地图集:黑河流域沙漠(沙地)、冰川图

    "Heihe River Basin Ecological hydrological comprehensive atlas" is supported by the key project of Heihe River Basin Ecological hydrological process integration research. It aims at data arrangement and service of Heihe River Basin Ecological hydrological process integration research. The atlas will provide researchers with a comprehensive and detailed background introduction and basic data set of Heihe River Basin. The desert (sand land) and glacier map of Heihe River Basin is one of the land surface part of the atlas, with scale of 1:2500000, positive axis isometric conic projection and standard latitude of 25 47 n. Data source: Glacier distribution data of Heihe River Basin Based on the first glacial catalogue, desert (sand) distribution data of 1:100000 Heihe River Basin, road data of 2010 Heihe River Basin, administrative boundary data of 1 million Heihe River Basin in 2008, residential area data of 2009 Heihe River Basin, and 100000 river flow data in 2009.

    0 2020-03-05

  • 黑河生态水文遥感试验:水文气象观测网数据集(裸地站自动气象站-2013)

    This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Sidaoqiao barren-land station between 9 July, 2013, and 31 December, 2013. The site (101.133° E, 41.999° N) was located on a barren-land surface in the Sidaoqiao, Dalaihubu Town, Ejin Banner, Inner Mongolia Autonomous Region. The elevation is 878 m. The installation heights and orientations of different sensors and measured quantities were as follows: four-component radiometer (CNR4; 24 m, south), two infrared temperature sensors (SI-111; 24 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), and soil temperature profile (AV-10T; 0, -0.02 and -0.04 m). The observations included the following: four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), and soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm) (℃). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Data were missing during 24 September, 2013 and 26 September, 2013 because of the malfunction of datalogger. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

    0 2019-09-15

  • 黄河上游ETM+数据集(1999-2010)

    Ⅰ. Overview Landsat5 was launched in April 1999. As a supplement and enhancement to the Landsat series, it carries an EMT+ sensor. The parameters of each band are close to that of Landsat5, but the panchromatic band with a resolution of 15 m is added, and the resolution of thermal infrared band is increased to 60 m.This dataset was collected in 1999-2010. There were 97 scenes of TM data in the upper reaches of the Yellow River. Due to sensor damage, there were bands in the images. Ⅱ. Data processing description Product level is L1 and has been geometrically corrected. Ⅲ. Data content description The naming method is L5 and row number and column number _ column number and date (yyyymmdd), such as L75129032_03220040816. Ⅳ. Data usage description The main applications are soil use/cover and desertification monitoring.

    0 2020-06-08

  • 青藏高原湖泊动态数据集(V1.0)(1984-2016)

    The data set of lake dynamics on the Tibetan Plateau was mainly derived from Landsat remote sensing data. Band ratio and the threshold segmentation method were applied. The temporal coverage of the data set was from 1984 to 2016, with a temporal resolution of 5 years. It covered the whole Tibetan Plateau at a spatial resolution of 30 meters. The water body area extraction method mainly adopted the band ratio (B4/B2) or water body index to construct the classification tree. The algorithm construction considered the spatial and temporal variations of the spectral characteristics of the water body and adjusted the threshold of the decision tree by the slope and the slope aspect information of the water body. The long-term sequence satellite-borne data came from different sensors, e.g., Landsat MSS, TM, ETM+, and OLI. The minimum unit for extracting water body information was 2*2 pixels, and all water body areas less than 0.36*10^-2 Km² were removed. The water body information extracted by high-resolution remote sensing data and the verification of the water body checkpoint determined by visual interpretation indicated that the overall accuracy of the water body area information for the Tibetan Plateau was above 95%. The data were saved as a shape file, and projected by Albers projection, with a central meridian of 105 ° and a double standard latitude of 25 ° and 47 °.

    0 2019-05-30

  • 黑河流域张掖市社会经济数据集(2001-2012年)

    Some economic data of Zhangye City from 2001 to 2012 include: per capita GDP, GDP, the proportion of fiscal revenue to GDP, per capita fiscal revenue, industrial contribution rate, the proportion of town population to total population, the proportion of added value of tertiary industry to GDP, the proportion of added value of secondary industry to GDP, industrial comprehensive benefit index, contribution rate of total assets, contribution rate of fixed assets, social labor productivity, G DP growth rate

    0 2020-03-08

  • 黑河生态水文遥感试验:黑河流域中游大满超级站TerraSAR-X地面同步观测数据集(2012年6月15日)

    On June 15, 2012, the satellite transit ground synchronous observation was carried out in the TerraSAR-X sample near the super station in the dense observation area of Daman. TerraSAR-X satellite carries X-band synthetic aperture radar (SAR). The daily transit image is HH / VV polarized, with a nominal resolution of 3 m, an incidence angle of 22-24 ° and a transit time of 19:03 (Beijing time), which mainly covers the ecological and hydrological experimental area of the middle reaches artificial oasis. The local synchronous data set can provide the basic ground data set for the development and verification of active microwave remote sensing soil moisture retrieval algorithm. Quadrat and sampling strategy: Six natural blocks are selected in the southeast of the super station, with an area of about 100 m × 100 m. One plot in the northwest corner of the sample plot is watermelon field, others are corn. The basis of sample selection is: (1) considering different vegetation types, i.e. watermelon and corn; (2) considering the visible light pixel, the sample size of 100m square can guarantee at least 4 30 M-pixel is located in the sample; (3) the location of the sample is near the super station, with convenient transportation. The observation of the super station is in the north, and there is a water net node on both sides of the East and the west, which makes it possible to integrate these observations in the future; (4) in addition, there are some obvious points around the sample, which can ensure that the geometric correction of the SAR image is more accurate in the future. Considering the resolution of the image, 21 splines (distributed from east to West) are collected at 5 m intervals. Each line has 23 points (north-south direction) at 5 m intervals. Four hydroprobe data acquisition systems (HDAS, reference 2) are used to measure at the same time. The sampling interval is controlled by the scale and moving splines on the measuring line to make up for the lack of using hand-held GPS. Measurement content: About 500 points on the quadrat were obtained, and each point was observed twice, i.e. in each sampling point, once in the film (marked a in the data record) and once out of the film (marked b in the data record); although the watermelon land was also covered with film, considering that it was not laid horizontally, only the soil moisture at the non covered position was measured (marked b in both data records). As the HDAS system uses pogo portable soil sensor, the soil temperature, soil moisture (volume moisture content), loss tangent, soil conductivity, real part and imaginary part of soil complex dielectric are observed. The vegetation team completed the measurement of biomass, Lai, vegetation water content, plant height, row ridge distance, chlorophyll, etc. Data: This data set includes two parts: soil moisture observation and vegetation observation. The former saves the data format as a vector file, the spatial location is the location of each sampling point (WGS84 + UTM 47N), and the measurement information of soil moisture is recorded in the attribute file; the vegetation sampling information is recorded in the excel table.

    0 2020-03-13

  • 祁连山综合观测网:黑河流域地表过程综合观测网(混合林站涡动相关仪-2018)

    This dataset contains the flux measurements from the mixed forest station eddy covariance system (EC) in the downstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2018. The site (101.1335° E, 41.9903° N) was located in the Sidaoqiao County, in Ejina Banner in Inner Mongolia Autonomous Region . The elevation is 874 m. The EC was installed at a height of 3.2 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Data during February 7 to 11, 2018 were missing due to the power loss. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

    0 2019-07-31

  • 黑河中游日蒸散发遥感反演产品(2012)

    Evapotranspiration monitoring is very important for agricultural water resource management, regional water resource utilization planning and sustainable development of social economy. The limitation of traditional monitoring et method is that it can't be observed in large area at the same time, so it can only be limited to the observation point. Therefore, the cost of personnel and equipment is relatively high. It can't provide the ET data of different land use types and crop types. Remote sensing can be used for quantitative monitoring of ET. the feature of remote sensing information is that it can reflect not only the macro structural characteristics of the earth's surface, but also the micro local differences. This data uses MODIS data and m-sebal model from June to September 2012 and time scale expansion scheme based on reference evaporation ratio to estimate the spatial and temporal distribution of evapotranspiration in the whole growth season of the middle reaches of Heihe River, and uses ground observation data to evaluate m-sebal model and time scale expansion scheme in detail. Its time resolution is day by day, spatial resolution is 250m, and data coverage is in the middle reaches of Heihe River, unit: mm. The projection information of the data is as follows: UTM projection, 47N.

    0 2020-03-08

  • 石羊河重点治理规划

    "Coupling and Evolution of Hydrologic -Ecologic-Economic Processes of the Heihe River Basin Under the Framework of Water Rights" (91125018) Project data collection 1 - SWater Resources Improvement Plan of Shiyang River Basin 1. Data Overview:The improvement plan of Shiyang River Basin was implemented in 2007 for river basin comparison. 2. Data Content: The released plan.

    0 2019-09-12

  • 黑河生态水文遥感试验:水文气象观测网数据集(景阳岭站自动气象站-2014)

    This data set contains meteorological element observation data from January 1, 2014 to December 31, 2014 from jingyangling station, upstream of heihe hydrometeorological observation network.The station is located in jingyangling pass, qilian county, qinghai province.The longitude and latitude of the observation point are 101.1160e, 37.8384N and 3750m above sea level.The air temperature and relative humidity sensors are located at 5m, facing due north.The barometer is installed in the anti-skid box on the ground;The tilting bucket rain gauge is installed at 10m;The wind speed and direction sensor is set at 10m, facing due north;The four-component radiometer is installed at 6m, facing due south;Two infrared thermometers are installed at 6m, facing due south, and the probe facing vertically downward;The soil temperature probe is buried at 0cm on the surface and 4cm underground, 10cm, 20cm, 40cm, 80cm, 120cm, 160cm, 2m to the south of the meteorological tower.The soil water probe is buried at 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil heat flow plates (3 pieces) are buried in the ground 6cm underground, 2m to the south of the meteorological tower. Observation items are: air temperature and humidity (Ta_5m, RH_5m) (unit: c, percentage), pressure (Press) (unit: hundred mpa), precipitation (Rain) (unit: mm), wind speed (WS_10m) (unit: m/s), wind (WD_10m) (unit: degrees), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit:Soil heat flux (Gs_1, Gs_2, Gs_3) (in watts/m2), soil temperature (Ts_0cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_80cm, Ts_120cm, Ts_160cm) (in Celsius), soil moisture (Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit: percentage). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;The four-component radiation occurred between June 12, 2014 and June 30, 2014. Due to the problem of collector extension board, data was missing.Soil temperature was between June 12, 2014 and June 14, 2014. Due to data collector problem, data was missing.Loss of wind speed due to sensor problem;The surface radiation temperature is between 9.2 and 10.23, and the data is missing due to the problem of collector extension board.(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: September 10, 2014, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Li et al.(2013), and for observation data processing, please refer to Liu et al.(2011).

    0 2020-03-04