This data set is the data set of Lake elements in Hoh Xil area of Qinghai Province, which records the main lake characteristics and water quality sampling and analysis data in detail. There are many lakes in Hoh Xil area of Qinghai Province, which is one of the concentrated distribution areas of lakes in Qinghai Tibet Plateau. The basic characteristics of Lake Development in this area are: large quantity, many types and complex structure. According to preliminary statistics, there are 107 lakes with an area of more than 1km2, with a total area of 3825km2 and a lake degree of about 0.05. The original data of the data set is digitized from the book "natural environment of Hoh Xil region in Qinghai Province", which includes 35 main lake characteristic data and 60 lake water chemical analysis data. This data set provides basic data for the study of Hoh Xil area in Qinghai Province, and has reference value for the research in related fields.
LI Bingyuan
The Qinghai-Tibetan Plateau (QTP), the largest high-altitude and low-latitude permafrost zone in the world, has experienced rapid permafrost degradation in recent decades, and one of the most remarkable resulting characteristics is the formation of thermokarst lakes. Such lakes have attracted significant attention because of their ability to regulate carbon cycle, water, and energy fluxes. However, the distribution of thermokarst lakes in this area remains largely unknown, hindering our understanding of the response of permafrost and its carbon feedback to climate change.Based on more than 200 sentinel-2A images and combined with ArcGIS, NDWI and Google Earth Engine platform, this data set extracted the boundary of thermokarst lakes in permafrost regions of the Qinghai-Tibet Plateau through GEE automatic extraction and manual visual interpretation.In 2018, there were 121,758 thermokarst lakes in the permafrost area of the Qinghai-Tibet Plateau, covering an area of 0.0004-0.5km², with a total area of 1,730.34km² respectively.The cataloging data set of Thermokarst Lakes provides basic data for water resources evaluation, permafrost degradation evaluation and thermal karst study on the Qinghai-Tibet Plateau.
CHEN Xu, MU Cuicui, JIA Lin, LI Zhilong, FAN Chenyan, MU Mei, PENG Xiaoqing, WU Xiaodong WU Xiaodong
This data is a simulated output data set of 5km monthly hydrological data obtained by establishing the WEB-DHM distributed hydrological model of the source regions of Yangtze River and Yellow River, using temperature, precipitation and pressure as input data, and GAME-TIBET data as verification data. The dataset includes grid runoff and evaporation (if the evaporation is less than 0, it means deposition; if the runoff is less than 0, it means that the precipitation in the month is less than evaporation). This data is a model based on the WEB-DHM distributed hydrological model, and established by using temperature, and precipitation (from itp-forcing and CMA) as input data, GLASS, MODIA, AVHRR as vegetation data, and SOILGRID and FAO as soil parameters. And by the calibration and verification of runoff,soil temperature and soil humidity, the 5 km monthly grid runoff and evaporation in the source regions of Yangtze River and Yellow River from 1998 to 2017 was obtained. If asc can't open normally in arcmap, please delete the blacks space of the top 5 lines of the asc file.
WANG Lei
Lake ice is an important parameter of the cryosphere, its change is closely related to the climate parameters such as temperature and precipitation, and can directly reflect the climate change, so it is an important indicator of the regional climate parameter change. However, because the research area is often located in the area with poor natural environment and few population, large-scale field observation is difficult to carry out, so sentinel 1 satellite data is used. The spatial resolution of 10 m and the temporal resolution of better than 30 days are used to monitor the changes of different types of lake ice, which fills the observation gap. Hmrf algorithm is used to classify different types of lake ice. Through time series analysis of the distribution of different types of lake ice in three polar regions with a part area of more than 25km2, a lake ice type data set is formed. The distribution of different types of lake ice in these lakes can be obtained. The data includes the serial number of the processed lake, the year in which it is located and the serial number in the time series, vector and other information. The data set includes the algorithm used, sentinel-1 satellite data used, imaging time, polar area, lake ice type and other information. Users can determine the changes of different types of lake ice in the time series according to the vector file.
Qiu Yubao, Tian Bangsen
This product is based on multi-source remote sensing DEM data generation. The steps are as follows: select control points in relatively stable and flat terrain area with Landsat ETM +, SRTM and ICESat remote sensing data as reference. The horizontal coordinates of the control points are obtained with Landsat ETM + l1t panchromatic image as the horizontal reference. The height coordinates of the control points are mainly obtained by ICESat gla14 elevation data, and are supplemented by SRTM elevation data in areas without ICESat distribution. Using the selected control points and automatically generated connection points, the lens distortion and residual deformation are compensated by Brown's physical model, so that the total RMSE of all stereo image pairs in the aerial triangulation results is less than 1 pixel. In order to edit the extracted DEM data to eliminate the obvious elevation abnormal value, DEM Interpolation, DEM filtering and DEM smoothing are used to edit the DEM on the glacier, and kh-9 DEM data in the West Kunlun West and West Kunlun east regions are spliced to form products.
ZHOU Jianming
This data set is the data set of climate elements in Hoh Xil area of Qinghai Province, covering the data of 14 observation stations, recording the climate observation data in 1990 in detail. Hoh Xil area in Qinghai Province has a high terrain with an average altitude of over 5000m. The climate is cold, the air is thin and the natural environment is bad. The vast area is still no man's land, known as "forbidden zone for human beings". Due to less interference from human activities, most of the area still maintains its original natural state. Its special geographical location, crustal structure and natural environment, as well as the unique composition of the biological flora, have been the focus of domestic surgical circles. The original data of the data set is digitized from the book "natural environment of Hoh Xil, Qinghai Province". The climate observation data include solar radiation, temperature, precipitation, air pressure, wind speed, etc. This data set provides basic data for the study of Hoh Xil area in Qinghai Province, and has reference value for the research in related fields.
LI Bingyuan
Based on the vulnerability assessment framework of "exposure sensitivity adaptability", the vulnerability assessment index system of agricultural and pastoral areas in Qinghai Tibet Plateau was constructed. The index system data includes meteorological data, soil data, vegetation data, terrain data and socio-economic data, with a total of 12 data indicators, mainly from the national Qinghai Tibet Plateau scientific data center and the resource and environmental science data center of the Chinese Academy of Sciences. Based on the questionnaire survey of six experts in related fields, the weight of the indicators is determined by using the analytic hierarchy process (AHP). Finally, four 1km grid data are formed involving ecological exposure, sensitivity, adaptability and ecological vulnerability in the agricultural and pastoral areas of the Qinghai Tibet Plateau. The data can provide a reference for the identification of ecological vulnerable areas in the Qinghai Tibet Plateau.
ZHAN Jinyan, TENG Yanmin, LIU Shiliang
Glaciers are very sensitive to regional and global climate change, so they are often regarded as one of the indicators of climate change, and their relevant parameters are also the key indicators of climate change research. Especially in the comparative study of the three polar environmental changes on the earth, the time and space difference ratio of glacial speed is one of the focuses of climate change research. However, because glaciers are basically located in high altitude, high latitude and high cold areas, the natural environment is poor, and people are rarely seen, and it is difficult to carry out the conventional field measurement of large-scale glacial movement. In order to understand the glacial movement in the three polar areas in a timely, efficient, comprehensive and accurate manner, radar interferometry, radar and optical image pixel tracking are used to obtain the three polar areas. The distribution of surface movement of some typical glaciers in some years from 2000 to 2017 provides basic data for the comparative analysis of the movement of the three polar glaciers. The dataset contains 12 grid files named "glacier movement in a certain period of time in a certain region". Each grid map mainly contains the regional velocity distribution of a typical glacier.
Yan Shiyong
This dataset contains land surface soil moisture products with SMAP time-expanded daily 0.25°×0.25°in Qinghai-Tibet Plateau Area. The dataset was produced based on the Random Forest method by utilizing passive microwave brightness temperature along with some auxiliary datasets. The temporal resolution of the product in 1980,1985,1990,1995 and 2000 is monthly, by using SMMR, SSM/I, and SSMIS brightness temperature from 19 GHz V/H and 37 GHz V channels. The temporal resolution of the product between June 20, 2002 and Dec 30, 2018 is daily, by utilizing AMSR-E and AMSR2 brightness temperature from 6.925 GHz V/H, 10.65 GHz V/H, and 36.5 GHz V channels. The auxiliary datasets participating in the Random Forest training include the IGBP land cover type, GTOPO30 DEM, and Lat/Lon information.
CHAI Linna, ZHU Zhongli, LIU Shaomin
The data set contains the monthly net primary productivity data of 2012-2015. The data is based on the temperature, precipitation, solar radiation and other climatic elements of the daily value data set of China's surface climate data, as well as the data of evapotranspiration et, potential PET, photosynthetic effective absorption ratio FPAR, NDVI and maximum light utilization rate, which are calculated by CASA model. The calculation results are verified by the data of Sanjiangyuan sampling point, The correlation coefficient is 0.718. The data set can be directly used for the analysis of grassland vegetation change in the Qinghai Tibet Plateau, providing the basis for dynamic monitoring of grassland change, and for the management of Grassland Change in the Qinghai Tibet Plateau.
FAN Jiangwen, XIN Liangjie, ZHANG Haiyan, YUAN Xiu
The strong spatial and temporal changes of precipitation often make it impossible to accurately know the spatial distribution and intensity changes of precipitation during the precipitation observation of conventional foundation stations. Satellite microwave remote sensing can overcome this limitation and achieve global scale precipitation and cloud observation. Compared with infrared/visible light, which can only reflect cloud thickness and cloud height, microwave can penetrate the cloud, and also use the interaction between precipitation and cloud particles in the cloud and microwave to detect the cloud and rain more directly. This data use the surface precipitation, obtained by the DPR double wave band precipitation radar carried by GPM, as the true value, soil temperature/humidity of NDVI, DEM and ERA5 as reference data. And the multi-band passive brightness temperature data of GMI is used to invert the instantaneous precipitation intensity during the warm season (May-September) in Tibetan Plateau, then the result is re-sampled to the spatial resolution of 0.1°and accumulated them to a day.
XU Shiguang
Soil data are extremely important at both global and local scales, and in the absence of reliable soil data, land degradation assessments, environmental impact studies and sustainable land management interventions are severely hampered。By Soil information data in the urgent need of the World, especially under the background of the convention on climate change, international institute for applied systems analysis (IIASA) and the UN food and agriculture organization (FAO) and the Kyoto protocol on Soil carbon measurement and the United Nations food and agriculture organization (FAO)/international global agriculture ecological assessment (GAEZ v3.0) jointly established under the sponsorship of a new generation of World Soil Database (Harmonized World Soil Database version 1.2) (HWSD V1.2). The 2010 data set of soil texture on the qinghai-tibet plateau was culled from the world soil database.Data format :grid format, projected as WGS84.The main soil classification system used is fao-90.Unique verification identifier of core soil institution unit: Mu_global-hwsd database soil mapping unit identifier that connects GIS layers. MU_SOURCE1 and MU_SOURCE2- source database mapping unit identifiers; SEQ- soil unit sequence in the composition of soil mapping unit; Soil classification system USES fao-7 classification system or fao-90 classification system (SU_SYM74 resp.su_sym90) or fao-85 (SU_SYM85). The main fields of the soil property sheet include: ID(database ID) MU_GLOBAL(soil unit identifier) (global) SU_SYMBOL Soil mapping unit SU_SYM74(FAO74classify ); SU_SYM85(FAO85classify); SU_SYM90(FAO90The soil name in a soil classification system); SU_CODE Soil mapping unit code SU_CODE74 Soil unit name SU_CODE85 Soil unit name SU_CODE90 Soil unit name DRAINAGE(19.5); REF_DEPTH(Soil reference depth); AWC_CLASS(19.5); AWC_CLASS(Soil available water content); PHASE1: Real (The soil phase); PHASE2: String (The soil phase); ROOTS: String (Depth classification of obstacles to the bottom of the soil); SWR: String (Characteristics of soil moisture content); ADD_PROP: Real (A specific soil type in a soil unit that is associated with agricultural use); T_TEXTURE(Topsoil texture); T_GRAVEL: Real (Percentage of aggregate volume on top);( unit:%vol.) T_SAND: Real (Top sand content); ( unit:% wt.) T_SILT: Real (surface silt content);(unit: % wt.) T_CLAY: Real (clay content on top);(unit: % wt.) T_USDA_TEX: Real (top-level USDA soil texture classification);(unit: name) T_REF_BULK: Real (top soil bulk density);(unit: kg/dm3.) T_OC: Real (top organic carbon content);(unit: % weight) T_PH_H2O: Real (top ph) (unit: -log(H+)) T_CEC_CLAY: Real (the cationic exchange capacity of the clay layer at the top);(unit: cmol/kg) T_CEC_SOIL: Real (cation exchange capacity of topsoil) (unit: cmol/kg) T_BS: Real (top basic saturation);(unit: %) T_TEB: Real (top exchange base);(unit: cmol/kg) T_CACO3: Real (top carbonate or lime content) (unit: % weight) T_CASO4: Real (top-level sulfate content);(unit: % weight) T_ESP: Real (top layer exchangeable sodium salt);(unit: %) T_ECE: Real (top-level conductivity).(unit: dS/m) S_GRAVEL: Real (percentage of bottom gravel volume);(unit: % vol.) S_SAND: Real (content of underlying sand);(unit: % wt.) S_SILT: Real (substratum silt content);(unit: % wt.) S_CLAY: Real (clay content in the bottom layer);(unit: % wt.) S_USDA_TEX: Real (USDA underlying soil texture classification);(unit: name) S_REF_BULK: Real (bulk density of underlying soil);(unit: kg/dm3.) S_OC: Real (bottom organic carbon content);(unit: % weight) S_PH_H2O: Real (base ph) (unit: -log(H+)) S_CEC_CLAY: Real (cation exchange capacity of the underlying cohesive soil);(unit: cmol/kg) S_CEC_SOIL: Real (cation exchange capacity of underlying soil) (unit: cmol/kg) S_BS: Real (underlying basic saturation);(unit: %) S_TEB: Real (underlying exchangeable base);(unit: cmol/kg) S_CACO3: Real (content of underlying carbonate or lime) (unit: % weight) S_CASO4: Real (substrate sulfate content);(unit: % weight) S_ESP: Real (underlying exchangeable sodium salt);(unit: %) S_ECE: Real (underlying conductivity).(unit: dS/m) This database is divided into two layers, in which the top layer (T) has a soil thickness of (0-30cm) and the bottom layer (S) has a soil thickness of (30-100cm).。 Refer to the instructions for other attribute values HWSD1.2_documentation.pdf,The Harmonized World Soil Database (HWSD V1.2) Viewer-Chinese description andHWSD.mdb。
Food and Agriculture Organization of the United Nations(FAO)
The basic data set of remote sensing for ecological assets assessment of the Qinghai-Tibet Plateau includes the annual Fraction Vegetation Coverage (FVC), Net Primary Productivity (NPP) and Leaf Area Index (LAI) of the Qinghai-Tibet Plateau since 2000, and other ecological parameters based on remote sensing inversion. The FVC data are mainly developed from MODIS NDVI data. NPP estimation method based on algorithm of CASA model.
LIU Wenjun
The Tibetan Plateau Glacier Data –TPG2013 is a glacial coverage data on the Tibetan Plateau around 2013. 128 Landsat 8 Operational Land Imager (OLI) images were selected with 30-m spatial resolution, for comparability with previous and current glacier inventories. Besides, about 20 images acquired in 2014 were used to complete the full coverage of the TP. The most frequent year in this period was defined as the reference year for the mosaic image: i.e. 2013. Glacier outlines were digitized on-screen manually from the 2013 image mosaic, relying on false-colour image composites (RGB by bands 654), which allowed us to distinguish ice/snow from cloud. Debris-free ice was distinguished from the debris and debris-covered ice by its higher reflectance. Debris-covered ice was not delineated in this data. [To minimize the effects of snow or cloud cover on glacierized areas, high-resolution (30 m spatial resolution and 4-day repetition cycle) images were also used for reference in glacier delineation from the Chinese satellites HJ-1A and HJ-1B, which were launched on Sep.6th 2008. Both carried as payload two 4-band CCD cameras with swath width 700 km (360 km per camera). All HJ-1A/1B data in 2012, 2013 and 2014 (65 scenes, Fig.S1, Table S1) were from China Centre for Resources Satellite Data and Application (CRESDA; http://www.cresda.com/n16/n92006/n92066/n98627/index.html). Each scene was orthorectified with respect to the 30m-resolution digital elevation model (DEM) of the Shuttle Radar Topography Mission (SRTM) and Landsat images.] The delineated glacier outlines were compared with band-ratio (e.g. TM3/TM5) results, and validated by overlapping them onto Google Earth imagery, SRTM DEM, topographic maps and corresponding satellite images. Topographic maps from the 1970s and all available satellite images (including Google EarthTM imagery and HJ-1A/1B satellite data) were used as base reference data. For areas with mountain shadows and snow cover, they were verified by different methods using data from different seasons. For glaciers in deep shadow, Google EarthTM imagery from different dates was used as the reference for manual delineation. Steep slopes or headwalls were also excluded in the TPG2013. Areas that appeared in any of these sources to have the characteristics of exposed ground/basement/bed rock were manually delineated as non-glacier, and were also cross-checked with CGI-1 and CGI-2. Steep hanging glaciers were included in TPG2013 if they were identifiable on images in all three epochs (i.e. TPG1976, TPG2001, and TPG2013). The accuracy of manual digitization was controlled within one half-pixel. All glacier areas were calculated on the WGS84 spheroid in an Albers equal-area map projection centred at (95°E, 30°N) with standard parallels at 15°N and 65°N. Our results showed that the relative deviation of manual interpretation was less than 3.9%.
YE Qinghua
These data contain two data files: GLOBELAND30 TILES (raw data) and TIBET_ GLOBELAND30_MOSAIC (mosaic data). The raw data were downloaded from the Global Land Cover Data website (GlobalLand3) (http://www.globallandcover.com) and cover the Tibetan Plateau and surrounding areas. The raw data were stored in frames, and for the convenience of using the data, we use Erdas software to splice and mosaic the raw data. The Global Land Cover Data (GlobalLand30) is the result of the “Global Land Cover Remote Sensing Mapping and Key Technology Research”, which is a key project of the National 863 Program. Using the American Landsat images (TM5, ETM+) and Chinese Environmental Disaster Reduction Satellite images (HJ-1), the data were extracted by a comprehensive method based on pixel classification-object extraction-knowledge checks. The data include 10 primary land cover types—cultivated land, forest, grassland, shrub, wetland, water body, tundra, man-made cover, bare land, glacier and permanent snow—without extracting secondary types. In terms of accuracy assessment, nine types and more than 150,000 test samples were evaluated. The overall accuracy of the GlobeLand30-2010 data is 80.33%. The Kappa indicator is 0.75. The GlobeLand30 data use the WGS84 coordinate system, UTM projection, and 6-degree banding, and the reference ellipsoid is the WGS 84 ellipsoid. According to different latitudes, the data are organized into two types of framing. In the regions of 60° north and south latitudes, the framing is carried out according to a size of 5° (latitude) × 6° (longitude); in the regions of 60° to 80° north and south latitudes, the framing is carried out according to a size of 5° (latitude) × 12° (longitude). The framing is projected according to the central meridian of the odd 6° band. GLOBELAND30 TILES: The original, unprocessed raw data are retained. TIBET_ GLOBELAND30_MOSAIC: The Erdas software is used to mosaic the raw data. The parameter settings use the default value of the raw data to retain the original, and the accuracy is consistent with that of the downloading site.
CHEN Jun
This dataset is derived from the paper: Ding, J., Wang, T., Piao, S., Smith, P., Zhang, G., Yan, Z., Ren, S., Liu, D., Wang, S., Chen, S., Dai, F., He, J., Li, Y., Liu, Y., Mao, J., Arain, A., Tian, H., Shi, X., Yang, Y., Zeng, N., & Zhao, L. (2019). The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region. Nature Communications, 10(1), 4195. doi:10.1038/s41467-019-12214-5. This data contains R code and a new estimate of Tibetan soil carbon pool to 3 m depth, at a 0.1° spatial resolution. Previous assessments of the Tibetan soil carbon pools have relied on a collection of predictors based only on modern climate and remote sensing-based vegetation features. Here, researchers have merged modern climate and remote sensing-based methods common in previous estimates, with paleoclimate, landform and soil geochemical properties in multiple machine learning algorithms, to make a new estimate of the permafrost soil carbon pool to 3 m depth over the Tibetan Plateau, and find that the stock (38.9-34.2 Pg C) is triple that predicted by ecosystem models (11.5 ± 4.2 Pg C), which use pre-industrial climate to initialize the soil carbon pool. This study provides evidence that illustrates, for the first time, the bias caused by the lack of paleoclimate information in ecosystem models. The data contains the following fields: Longitude (°E) Latitude (°N) SOCD (0-30cm) (kg C m-2) SOCD (0-300cm) (kg C m-2) GridArea (k㎡) 3mCstcok (10^6 kg C)
DING Jinzhi, WANG Tao
Photosynthetic effective radiation absorption coefficient photosynthetically active radiation component is an important biophysical parameter. It is an important land characteristic parameter of ecosystem function model, crop growth model, net primary productivity model, atmosphere model, biogeochemical model and ecological model, and is an ideal parameter for estimating vegetation biomass. The data set contains the data of photosynthetically active radiation absorption coefficient in Qinghai Tibet Plateau, with spatial resolution of 500m, temporal resolution of 8D, and time coverage of 2000, 2005, 2010 and 2015. The data source is MODIS Lai / FPAR product data mod15a2h (C6) on NASA website. The data are of great significance to the analysis of vegetation ecological environment in the Qinghai Tibet Plateau.
FANG Huajun, Ranga Myneni
This data set contains the statistical information of natural disasters in Qinghai Tibet Plateau in the past 50 years (1950-2002), including drought, snow disaster, frost disaster, hail, flood, wind disaster, lightning disaster, cold wave and strong cooling, low temperature and freezing damage, gale sandstorm, insect disaster, rodent damage and other meteorological disasters. Qinghai and Tibet are the main parts of the Qinghai Tibet Plateau. The Qinghai Tibet Plateau is one of the Centers for the formation and evolution of biological species in China. It is also a sensitive area and fragile zone for the international scientific and technological circles to study climate and ecological environment changes. Its complex terrain conditions, high altitude and severe climate conditions determine that the ecological environment is very fragile, It has become the most frequent area of natural disasters in China. The data were extracted from "China Meteorological Disaster Canon · Qinghai volume" and "China Meteorological Disaster Canon · Tibet Volume", which were manually input, summarized and proofread.
Statistical Bureau Statistical Bureau
This study takes the land resources in the Qinghai-Tibet Plateau as the evaluation object, and clarifies the current situation in the region suitable for agriculture, forestry, animal husbandry production and the quantity, quality and distribution of the reserve land resources. Through field investigations, collect relevant data from the study area, and combine relevant literature and expert experience to determine the evaluation factors (altitude, slope, annual precipitation, accumulated temperature, sunshine hours, soil effective depth, texture, erosion, vegetation type, NDVI). The grading and standardization are carried out, and the weights of each evaluation factor are determined by principal component analysis. The weighted index and model are used to determine the total score of the evaluation unit. Finally, the ArcGis natural discontinuity classification method is used to obtain the Qingshang Plateau. And the grades of farmland, forestry and grassland suitability drawings of the Qinghai-Tibet Plateau with a resolution of 90m were given. Finally, the results are verified and analyzed.
YAO Minglei
The data set records the number of employees of other units in Qinghai Province by industry and region at the end of the year, and the data is divided by the number of employees of other units by industry and region at the end of the year. The data are collected from the statistical yearbook of Qinghai Province issued by the Bureau of statistics of Qinghai Province. The data set consists of 8 data tables Number of employees in other units by industry at the end of the year 1995-2001.xls Number of employees in other units by industry at the end of the year 1995-2002.xls Number of employees of other units by industry at the end of 2003.xls Number of employees of other units by industry at the end of 2004.xls Number of employees of other units by industry at the end of 2005.xls Number of employees in other units by industry and region at the end of 2006.xls Number of employees in other units by industry and region at the end of 2007.xls The number of employees of other units by industry and region at the end of 2008.xls. The data table structure is similar. For example, there are 10 fields in the 2005 data table of the number of employees of other units by industry and region at the end of the year Field 1: Project Field 2: province total Field 3: Xining City Field 4: Haidong region Field 5: Haibei Prefecture Field 6: huangnanzhou Field 7: Hainan Field 8: Golog Field 9: Yushu prefecture Field 10: Haixi
Qinghai Provincial Bureau of Statistics