Based on the vulnerability assessment framework of "exposure sensitivity adaptability", the vulnerability assessment index system of agricultural and pastoral areas in Qinghai Tibet Plateau was constructed. The index system data includes meteorological data, soil data, vegetation data, terrain data and socio-economic data, with a total of 12 data indicators, mainly from the national Qinghai Tibet Plateau scientific data center and the resource and environmental science data center of the Chinese Academy of Sciences. Based on the questionnaire survey of six experts in related fields, the weight of the indicators is determined by using the analytic hierarchy process (AHP). Finally, four 1km grid data are formed involving ecological exposure, sensitivity, adaptability and ecological vulnerability in the agricultural and pastoral areas of the Qinghai Tibet Plateau. The data can provide a reference for the identification of ecological vulnerable areas in the Qinghai Tibet Plateau.
ZHAN Jinyan TENG Yanmin LIU Shiliang
The spatial distribution data set of disaster prevention and mitigation facilities in hambantota and Colombo (2016-2018) is obtained by extracting classification information from high-resolution remote sensing images. Based on the fusion of 1-2m remote sensing image data, combined with POI data, the distribution information of hospital, fire protection and refuge facilities were extracted respectively. On this basis, the relevant layers and poi layers of OSM were superimposed with the extracted results and images. Through visual inspection, errors were found and the extracted results were corrected. Finally, hambantuota was formed Vector layer data of disaster prevention and mitigation related facilities in the node and Colombo area.
DONG Wen
The urbanization rate data of 34 key areas along the One Belt One Road are downscaled from coarse data. First, we collect the urbanization rate statistical data at the national or provincial scales, and use GIS spatial analysis methods to analyze the relationship between urbanization rate and covariables (e.g.,night lighting NPP-VIIRS). The spatial regression analysis method is used to model relationship between the urbanization rate data and covariables, and then the county-level urbanization rate data were downscaled and predicted. Based on statistical data and spatial analysis, it is finally integrated into urbanization rate data. The data can provide important basic data for the development of social and economic research on key area and regions along the Belt and Road.
GE Yong LING Feng
The urbanization rate data of 34 key areas along the One Belt One Road are downscaled from coarse data. First, we collect the urbanization rate statistical data at the national or provincial scales, and use GIS spatial analysis methods to analyze the relationship between urbanization rate and covariables (e.g.,night lighting NPP-VIIRS, road network density). The spatial regression analysis method is used to model relationship between the urbanization rate data and covariables, and then the county-level urbanization rate data were downscaled and predicted. Based on statistical data and spatial analysis, it is finally integrated into urbanization rate data. The data can provide important basic data for the development of social and economic research on key area and regions along the Belt and Road.
GE Yong LING Feng
1. The data content is the monthly groundwater level data measured between the tail of chengdina River, Kuqa Weigan River and Kashgar river of Tarim River, which is required to be the water level data of 30 wells, but the number of wells in this data reaches 44; 2. The data is translated into CSV through hobo interpretation, and the single bit time-lapse value is found through MATLAB, and then extracted and calculated through Excel screening, that is, through the interpretation of original data, through the communication Out of date and daily data, calculated monthly data; 3. Data is measured data, 2 decimal places are reserved, unit is meter, data is accurate; 4. Data can be applied to scientific research and develop groundwater level data for local health.
CHEN Yaning HAO Xingming
The Three-River-Source National Park with an area of 123,100 km2 and include three sub regions, they are source region of the Yangtze River in the national park, source region of Yellow River in the national park and source region of Lancang River in the national park. The national park is located between longitude 89°50'57" -- 99°14'57", latitude 32°22'36" -- 36°47'53". It accounts for 31.16% of the total area of Three-River-Source region. This data set is generated by digitizing the location map of Three-River-Source national park in the comprehensive planning of Three-River-Source national park. The data include the boundary for the national park. Data format is Shapefile. Arcmap is recommended to open the data.
WANG Xufeng
The Three-River-Source National Park with an area of 123,100 km2 and include three sub regions, they are source region of the Yangtze River in the national park, source region of Yellow River in the national park and source region of Lancang River in the national park. The national park is located between longitude 89°50'57" -- 99°14'57", latitude 32°22'36" -- 36°47'53". It accounts for 31.16% of the total area of Three-River-Source region. This data set is generated by digitizing the location map of Three-River-Source national park in the comprehensive planning of Three-River-Source national park. The data include the boundary for the national park. Data format is Shapefile. Arcmap is recommended to open the data.
WANG Xufeng
Taking the villages or towns as the basic division unit, taking into account the forest topography (elevation, slope), vegetation type and coverage, land use status and agricultural utilization type, distribution of natural reserves, key points of ecological protection and agricultural development direction, the preliminary scheme of the agricultural and animal husbandry regulation and Control Division of the ecological protection on the Qinghai Tibet Plateau is proposed, which divides the Qinghai Tibet Plateau into 8 regions (3 regions With ecological protection as the key agricultural and animal husbandry limited control area, 5 agricultural moderate development areas) and 23 residential areas, the way of protection + agricultural and animal husbandry development direction is adopted in the naming of zones. Based on the effective protection of ecology and the moderate development of agriculture and animal husbandry in the Qinghai Tibet Plateau, the map can provide reference information for the protection of ecological security barrier function and sustainable management.
LV Changhe LIU Yaqun
The data includes the county-level data of characteristic agriculture distribution in the Qinghai Tibet Plateau, which lays the foundation for the spatial distribution and development of characteristic agriculture in the Qinghai Tibet Plateau. The data comes from the planning documents of each province in the Tibetan Plateau region, such as the development plan of the characteristic agricultural products base of the Tibetan Plateau (2015-2020). The data is the distribution of characteristic agriculture at the county level, including four kinds of agricultural products: highland barley, yak, sheep and wolfberry. The spatialization of main agricultural products of characteristic agriculture at the county level is realized. The time range is set to 2015-2020, referring to the planning and construction time of characteristic agriculture in each province in the data source. The data can be applied to the research on the spatial distribution of characteristic agriculture and the development of characteristic agriculture in the future.
SHI Wenjiao
The data set analyzes the spatial and temporal distribution, impact and loss of typical global flood disasters from 2018 to 2019. In 2018, there were 109 flood disasters in the world, with a death toll of 1995. The total number of people affected was 12.62 million. The direct economic loss was about 4.5 billion US dollars, which was at a low level in the past 30 years. The number of global flood incidents in 2018 was higher in the first half of the year than in the second half of the year, and the frequency of occurrence was higher from May to July. Therefore, based on three typical disaster events such as the hurricane flood in Florence in the United States in 2018, the flooding of the Niger River in Nigeria in 2018, and the Shouguang flood in Shandong Province in 2018, the disaster background, hazard factors, and disaster situation were analyzed. .
JIANG Zijie JIANG Weiguo WU Jianjun ZHOU Hongmin
This data is originated from the 1:100,000 national basic geographic database, which was open freely for public by the National Basic Geographic Information Center in November 2017. The boundary of the Qinghai-Tibet Plateau was spliced and clipped as a whole, so as to facilitate the study on the Qinghai-Tibet plateau. This data set is the 1:100,000 administrative boundaries of the qinghai-tibet plateau, including National_Tibet_line、 Province_Tibet、City_Tibet、County_Tibet_poly and County_Tibet_line. Administrative boundary layer (County_Tibet_poly) property name and definition: Item Properties Describe Example PAC Administrative division code 513230 NAME The name of the County line name Administrative boundary layer (BOUL) attribute name and definition: Item Properties Describe Example GB classification code 630200 Administrative boundary layer (County_Tibet_line) attribute item meaning: Item Properties Describe Example GB 630200 Provincial boundary GB 640200 Prefectural, municipal and state administrative boundaries GB 650201 county administrative boundaries (determined)
National Basic Geographic Information Center
This dataset contains monthly and daily 0.01°×0.01° (2018) LST products in Qilian Mountain Area. The dataset was produced based on MYD21A1 LST products at a resolution of 0.01° along with some auxiliary datasets. The auxiliary datasets include Lat/Lon and the Julian Day information. MYD21A1 is the official LST product of MODIS, and the data is divided into day and night, using TES algorithm. Download URL: https://urs.earthdata.nasa.gov.
LI Hua
The integration dataset of Tibetan Plateau boundary includes: TPBoundary_2500m:Based on ETOPO5 Global Surface Relief, ENVI+IDL is used to extract the longitude of the Tibetan Plateau (65~105) and the altitude of 2500 meters above the latitude (20~45); TPBoundary_3000m:Based on ETOPO5 Global Surface Relief, ENVI+IDL is used to extract the longitude of the Tibetan Plateau (65~105) and the altitude of 3000 meters above the latitude (20~45); TPBoundary_HF (High Frequency):Li Bingyuan (1987) has conducted a systematic discussion on the principle and specific boundary of determining the scope of the Qinghai-Tibet Plateau. From the perspective of the formation and basic characteristics of plateau geomorphology, Based on the geomorphological features, the plateau surface and its altitude, and considering the integrity of the mountain as the basic principle for determining the plateau range.Zhang Yili (2002) according to the results of new research in related fields and years of field practice, demonstration principles to determine the scope and boundaries of the Tibetan Plateau, Based on the information technology method, the location and boundary position of the Qinghai-Tibet Plateau are accurately located and quantitatively analyzed. It is concluded that the Qinghai-Tibet Plateau is partly in the Pamir Plateau in the west, the Hengduan Mountains in the east, the southern margin of the Himalayas in the south, and the Kunlun Mountains in the north. Mountain - north side of Qilian Mountain. On April 14, 2017, the Ministry of Civil Affairs of the People's Republic of China issued the "Announcement on Supplementing the Public Use of Place Names in the Southern Region of Tibet (First Batch)", adding Wujianling, Mirage, Qu Dengbu, and Mechuca 6 places in southern Tibet such as Baimingla Mountain Pass and Namkam;. TPBoundary_rectangle:According to the range Lon (63~105E) & Lat (20~45N), The data is projected using latitude and longitude WGS84.. Project source: national natural science foundation of China (41571068,41301063) Spatial range and projection mode of data: elevation greater than 2500m, WGS84 projection As the basic data, the boundary of qinghai-tibet plateau can be used as a reference for all kinds of geoscientific research on Qinghai-Tibet Plateau.
ZHANG Yili REN Huixia PAN Xiaoduo
The data set was produced based on the SRTM DEM data collected by Space Shuttle Radar terrain mission in 2016, the reference data such as river, lake and other water system auxiliary data , using the arcgis hydrological model to analyze and extract the river network. There are 12 sub-basins over the Tibet Plateau, including AmuDayra、Brahmaputra、Ganges、Hexi、Indus、Inner、Mekong、Qaidam、Salween、Tarim、Yangtze、Yellow. The outer boundary is based on the 2500-metre contour line and national boundaries.
ZHANG Guoqing
The third pole administrative boundary data set includes: national boundary (Tibet_National), provincial boundary (Tibetc_Provincial), city and region boundary (Tibet_Prefecture) vector space data set and its attribute name, TYPE related attribute data :(LOCAL_NAME), (ENG_NAME), (CNTRY_NAME), (TYPE), (CNTRY_CODE), (CONTINENT). The data comes from the 1:100,000 ADC_WorldMap global data set,The data through topology, warehousing and other data quality inspection,Data through the topology, into the library,It's comprehensive, up-to-date and seamless geodigital data. The world map coordinate system is latitude and longitude, D_WGS_1984 datum surface
ADC WorldMap
This dataset is the boundary vector data of county-level administrative units in Tibetan Plateau in 2015. The data is in Shapefile format and includes provincial administrative units such as Tibet Autonomous Region, Qinghai Province, Gansu Province, Yunnan Province, Xinjiang Uygur Autonomous Region, and Sichuan Province. The county-level administrative unit boundary within the plateau can be used for the geographical background research of the urbanization and ecological environment interaction stress of the Qinghai-Tibet Plateau. It is the basic geographic data for the statistics of the urbanization indicators of the county-level units of the Qinghai-Tibet Plateau. The data is obtained by means of data capture and collected through the administrative interface data acquisition API interface provided by the high-tech map. The data set uses the geographic coordinate system of WGS84.
DU Yunyan
Antarctic administrative boundary datasets consist of the properties of the state boundaries of the Antarctic states (properties properties), and the corresponding names and types of those properties :(CITY_POP), (ENG_NAME), (CNTRY_NAME), (TYPE), (CNTRY_CODE), (YEAR). The data comes from the 1:100,000 ADC_WorldMap global data set,The data through topology, warehousing and other data quality inspection,Data through the topology, into the library,It's comprehensive, up-to-date and seamless geodigital data. The world map coordinate system is latitude and longitude, WGS84 datum surface,Antarctic specific projection parameters(South_Pole_Stereographic).
ADC WorldMap
This dataset is the boundary vector data of the prefecture-level administrative units in the Qinghai-Tibet Plateau in 2015. The data is in the Shapefile format and includes provincial-level administrative units such as the Tibet Autonomous Region, Qinghai Province, Gansu Province, Yunnan Province, and Xinjiang Uygur Autonomous Region in the Qinghai-Tibet Plateau. The 38 prefecture-level administrative units can be used for the geographical background research of the urbanization and ecological environment interaction stress of the Qinghai-Tibet Plateau. It is the basic geographic data for the statistics of urbanization indicators such as social, economic and population levels of the Qinghai-Tibet Plateau. The data is obtained by means of data capture and collected through the administrative interface data acquisition API interface provided by the high-tech map. The data set uses the geographic coordinate system of WGS84.
DU Yunyan
The dataset is the land cover of Qing-Tibet Plateau in 2009. The data format is a TIFF file, spatial resolution is 300 meters, including crop land, grassland, forest land, urban land, and so on. The dataset offers a geographic fundation for studying the interaction between urbanization and ecological reservation of Qing-Tibet Plateau. This land cover data is a product of CCI-LC project conducted by European Space Agency. The coordinate reference system of the dataset is a geographic coordinate system based on the World Geodetic System 84 reference ellipsoid. There are 22 major classes of land covers. The data were generated using multiple satellite data sources, including MERIS FR/RR, AVHRR, SPOT-VGT, PROBA-V. Validation analysis shows the overall accuracy of the dataset is more than 70%, but it varies with locations and land cover types.
DU Yunyan
Arctic administrative boundary data sets include Arctic_National, Arctic_Provincial, and Arctic_Prefecture vector spatial data sets of arcti-bound countries and Its corresponding name, TYPE related attribute data :(LOCAL_NAME), (ENG_NAME), (CNTRY_NAME), (TYPE), (CNTRY_CODE), (CONTINENT) The data comes from the 1:1,000,000 ADC_WorldMap global data set, which is a comprehensive, up-to-date and seamless geographic digital data. The world map coordinate system is latitude and longitude, WGS84 datum surface, and the arctic data set is the special projection parameter for the arctic (North_Pole_Stereographic).
ADC WorldMap