Paleolimnology and paleoecology provide a long-term perspective for the study of climate change and ecosystem process change. They record the direct and indirect impacts of climate change and human activities on aquatic ecosystems. Zooplankton shells and sedimentary pigments in lake sediments can reflect the changes of community structure of primary producers (photosynthetic organisms) and primary consumers in lake ecosystems. In this paper, we have reconstructed the zooplankton and phytoplankton community changes in the past 600 years using Artemia head shells, Tibetan flea eggs and sedimentary pigments from the sediments of dazechoo Lake in the central Tibetan Plateau. Total nitrogen and phosphorus were used to reconstruct the changes of nutrients in the lake in the past. The results showed that the change of phytoplankton community was mainly controlled by zooplankton community, which could provide an important theoretical reference for the future management of plateau lake ecosystem.
LIANG Jie
Paleoecological and paleolimnological studies can provide a long-term perspective on changes in environmental and ecosystem processes. The sediments documented both direct and indirect impacts of climate change and human activities on aquatic ecosystems. The fossils of zooplankton remain and pigments in lake sediments can reflect community structure changes of primary producers and primary consumers. The authors reconstructed the zooplankton and algal community changes during the past 600 years using carapaces of A. tibetiana and resting eggs of D. tibetana and pigments from the sediments of Dagze Co, in the central Tibet Plateau. Using total nitrogen and total phosphorus reconstructed the nutrient changes. These results suggest that algal community structure and changes in production can be attributed to alterations in the zooplankton community, with important implications for Tibetan aquatic ecosystems.
LIANG Jie
Paleomagnetic Dataset of Zagros forelandbasin in IranPaleomagnetic Dataset of Zagros forelandbasin in IranPaleomagnetic Dataset of Zagros forelandbasin in IranPaleomagnetic Dataset of Zagros forelandbasin in IranPaleomagnetic Dataset of Zagros forelandbasin in IranPaleomagnetic Dataset of Zagros forelandbasin in Iran
SUN Jimin
Airborne pollen is mainly produced and disseminated during the process of plant flowering, controlled by plant phenology and climatic conditions. As an important bioindicator of plant behavior, airborne pollen can supply information about reproductive phenology, climate and atmospheric circulations. From 2011 to 2013, airborne pollen samples were collected using a volumetric Burkard pollen trap at the Qomolangma Station for Atmospheric and Environmental Observation and Research, Chinese Academy of Sciences (QOMS, 28.21°N, 86.56°E; 4276 m a.s.l.), on the northern slope of the Himalayas. The sampler is a volumetric air-suction device capable of continuously gathering pollen and spore particles. Air is drawn in at a speed of 10 l/min, and airborne particles are deposited on a sticky tape mounted on a drum that makes one complete rotation per week. The tape is changed weekly after a complete rotation. Then, the tape is removed and cut into seven pieces, with each piece representing one day of sampling. The pieces are mounted on slides using glycerin and safranin. Identification and counting of pollen grains were performed under an Olympus BX41 microscope at 400× magnification; all pollen grains on each slide were counted . Pollen concentration was expressed as the daily pollen grains per cubic meter of air using a constant air intake speed of 10 l/min. The pollen concentration and percentage of each pollen taxon in each year were calculated. The pollen sampling and lab process were followed the standard methods to ensure the authenticity and reliability of the data. The pollen data can provides insights into vegetation response to climate change and has significance for interpreting fossil pollen records.
LÜ Xinmiao
Black carbon is an important light absorbing substance, which has an important impact on climate change. This data set contains the data of black carbon concentration and sedimentation flux in the core of six lakes (gun Yong lake, Tanggula lake, linggecuo, Ranwu lake, gokyo, gosainkunda) on the Qinghai Tibet Plateau and the south slope of the Himalayas. The carbon concentration of Huxin black was determined by digestion filtration thermoluminescence method. This dataset is an excel file, which can be opened directly by using Excel. This data set is helpful to study the history of atmospheric black carbon deposition in the Qinghai Tibet Plateau and its surrounding areas and to further analyze the sources of atmospheric black carbon. It can be used as the basic data for the study of atmospheric black carbon transport and climate effect assessment.
KANG Shichang
This data set comes from shallow marine carbonate sections at Tingri and Gamba, south Tibet. The age of these samples is about 56 Ma (at the Paleocene-Eocene boundary). At Tingri, we studied two parallel sections (13ZS section and 10-11TM section), and at Gamba, we studied one section (11TMG). From the 13ZS section, we analyzed carbon and oxygen isotopic compositions and calcium carbonate content of the whole carbonate rock, as well as the in-situ carbon isotopic compositions and element contents of the foraminifera shell. From the 10-11TM section, we analyzed carbon, oxygen and strontium isotopic compositions of the whole rock. From the 11TMG section, we analyzed carbon and oxygen isotopic compositions of the whole carbonate rock. Carbon and oxygen isotopic compositions of the whole rock were measured by gas isotope mass spectrometer (MAT251), strontium isotope by thermal ionization mass spectrometry (TIMS), calcium carbonate content by acid dissolution, in-situ carbon isotopic compositions by SIMS, and in-situ element contents by LA-ICPMS. Among these data, in-situ carbon isotope data were obtained from the laboratory of Professor John Valley at the University of Wisconsin-Madison in the United States, and the rest are from the relevant laboratories of the Department of Geosciences at the University of Bremen in Germany. Based on these data, we published three peer-reviewed papers on Journals of Gondwana Research, GSA Bulletin, and Global and Planetary Change.
ZHANG Qinghai
The data include the carbonate content, carbon isotope and oxygen isotope analysis results of inorganic carbonates of 79 samples from 850 m natural section of the middle late Eocene in the salkuli basin. The carbon and oxygen isotopes of carbonate in the sediments record the hydrological and vegetation information in the geological history, which is one of the main indicators of paleoenvironmental tracer research. After grinding and sieving, the carbon and oxygen isotope analysis is completed by the sample processing unit (carbonate device) and MAT252 isotope mass spectrometry online automatic online system. The analytical accuracy of the sample is: carbon isotope is better than ± 0.06 ‰, and oxygen isotope is better than ± 0.08 ‰. Through the analysis of carbon and oxygen isotope data of solkuli section, the evolution history of arid environment since Eocene can be reconstructed, and the paleoclimate effect of the Tibetan Plateau uplift and global climate change can be discussed.
SUN Jimin
Luanhaizi borehole (LHZ18) was obtained by huangxiaozhong research group of Lanzhou University in August 2018. This data is geochemical element data of 0-859 cm core of Luanhaizi Lake in Qilian Mountains. The experiment was completed in the Key Laboratory of Western Ministry of environmental education of Lanzhou University. This data provides long series and high-resolution geochemical element content. The data comes from core scanning, continuous elemental content changes were obtained 0-829 cm through element change and the field records. The data provided long-time-scale elemental content changes of lakes in Qilian Mountains, and played an important role in the study of paleoclimate and Paleoenvironment in the long time series of the Qinghai-Tibetan Plateau.
HUANG Xiaozhong ZHANG Jun WANG Jiale REN Xiuxiu SUN Mingjie XIANG Lixiong
Luanhaizi Borehole (LHZ18) was acquired by Huang Xiaozhong Research Group of Lanzhou University in August 2018. This data is 0-859 cm grain size data of the core of Luanhaizi Lake in Qilian Mountains. Grain size analysis was carried out at 0-4 m according to one sample, and grain size analysis was carried out at on ssample interval at the depth of 4-8.6 m, totaling 390 data were obtained. The experiment was completed in the Key Laboratory of the Ministry of Environmental Education of Lanzhou University, and grain size analysis was carried out with Mastersizer 2000 instrument. The data reflected the grain size change of the lake sediment, which is very important for the study of long-time series eolian activities in the Qinghai-Tibet Plateau.
HUANG Xiaozhong ZHANG Jun WANG Jiale REN Xiuxiu SUN Mingjie XIANG Lixiong
The source of the data is paper: Zhang, J.F., Xu, B.Q., Turner, F., Zhou, L.P., Gao, P., Lü, X.M., & Nesje, A. (2017). Long-term glacier melt fluctuations over the past 2500 yr in monsoonal high asia revealed by radiocarbon-dated lacustrine pollen concentrates. Geology, 45(4), 359-362. In this paper, the researcher of Institute of Tibetan Plateau Research, Chinese Academy of Sciences and CAS Center for Excellence in Tibetan Plateau Earth Sciences, Baiqing Xu, with his postdoctoral fellow, Jifeng Zhang, and collaborators from Peking University and other institutions, propose that the OPE (“old pollen effect”, the offset between the calibrated 14C ages of pollen in lake sediments and the sediment depositional age) as a new indicator of glacier melt intensity and fluctuations by measuring the radiocarbon ages of the sediments of the proglacial lake of Qiangyong Glacier on the southern Tibetan Plateau with multi-methods (bulk organic matter, pollen concentrates and plant residues). This research suggests that hemispheric-scale temperature variations and mid-latitude Westerlies may be the main controllers of the late Holocene glacier variability in monsoonal High Asia. It also shows that the 20th-century glacier melt intensity exceeded that of two historical warm epochs (the Medieval Warm Period, and the Iron/Roman Age Optimum) and is unprecedented at least for the past 2.5 k.y. This data is provided by the author of the paper, it contains long-term glacier melt fluctuations of Qiangyong Glacier over the past 2500 yr reconstructed by the OPE. A 3.06-m-long core (QYL09-4) and a 1.06-m-long parallel gravity core (QY-3) were retrieved by the researchers from the depositional center of Qiangyong Co. Using a new composite extraction procedure, they obtained relatively pure pollen concentrates and plant residue concentrates (PRC; >125 μm) from the finely laminated sediments. Bulk organic matter and the PRC and pollen fractions were used for 14C dating independently. All 14C ages were calibrated with IntCal13 (Reimer et al., 2013). The age-depth model is based on 210Pb and 137Cs ages and five 14C ages of PRC. Only the youngest PRC ages were used for the age-depth model, whereas older ages that produce a stratigraphic reversal and are apparently influenced by redeposited or aquatic plant material were rejected. The deposition model was constructed using the P_Sequence algorithm in Oxcal 4.2 (Bronk Ramsey, 2008). For the calculation of the offset between the calibrated pollen 14C ages and the sediment depositional age, 2σ intervals for interpolated ages according to the deposition model were subtracted from calibrated pollen ages (2σ span), resulting in the age offset between pollen and estimated sediment ages (ΔAgepollen). This data is radiocarbon ages and the calculated ΔAgepollen of core QYL09-4 from a proglacial lake of Qiangyong Glacier. The data contains fields as follows: Lab No. Dating Material Depth (cm) 14C age (yr BP) ∆Agepollen (≥95.4 % yrs) Sediment Age (CE) See attachments for data details: ZhangJF et al. 2017 GEOLOGY_Long-term glacier melt fluctuations over the past 2500 yr on the Tibetan Plateau.pdf.
ZHANG Jifeng
This data set contains stable oxygen isotope data of daily precipitation in Lulang, Nuxia, and Guangzhou from 2007 to 2014. The precipitation data of the Lulang station are obtained via automatic weather station (AWS) rain gauges, and the precipitation data for Guangzhou and Nuxia are the manual records of meteorological or hydrological stations. Project source of the data: the general project of the National Natural Science Foundation of China “Exploring the impact of ENSO on the source of water vapor in the north and south of the ‘third pole' through stable isotope of precipitation and ice core” (41571074). Data processing related information can be found in the following reference: Yang, X, Mary E. Davis, Sunil Acharya, Tandong Yao. Asian Monsoon variations revealed from stable isotopes in precipitation. Climate Dynamics, 2017, doi:10.1007/s00382-017-4011 -4. Data collection sites: Lulang Station of Southeast Tibet, Chinese Academy of Sciences, Longitude: 94.73°E; Latitude: 29.77°N; Altitude: 3330 m. Guangzhou weather station, longitude: 113.32 °E; latitude: 23.13 ° N; altitude: 7 meters. Nuxia hydrological station, longitude: 94.65 °E; latitude: 29.47 ° N; elevation: 2920 m.
YANG Xiaoxin
This data set contains Chen Co fossil diatoms, Chen Co conductivity reconstruction, Nam Co fossil diatoms, and Nam Co conductivity reconstruction. It can be used to study the characteristics of the living diatom species and for quantitative reconstruction of the paleoenvironments of the lakes of the Tibetan Plateau. The diatom data are obtained on the basis of the sample identification statistics, the water environment data are measured by the instrument, and the reconstructed conductivity is calculated from the diatom-salinity conversion function. This data set is obtained from laboratory measurements. The data are obtained immediately after the completion of the instrument or experiment. The samples and data are collected in strict accordance with relevant operating procedures at all stages. There are 6 subtables in this dataset: Subtable 1 is for a lake environment and has 18 fields, which are the lake name, number, lake number, latitude, longitude, water depth, altitude and water environment indicators; Subtable 2 is for the diatoms in surface sediments and has 4 fields, which are the lake serial number, the diatom abbreviation, the diatom name and its content; Subtable 3 is for the Chen Co diatoms and has 6 fields, which are sample number, analysis number and depth, diatom abbreviation, diatom name and its content; Subtable 4 is for the Chen Co conductivity reconstruction and has 3 fields, which are the depth, age, and conductivity of diatom reconstruction; Subtable 5 is for Nam Co fossil diatoms and has 5 fields. The first two fields are depth and age, and the other fields are the contents of diatoms of different species; and Subtable 6 is for the Nam Co conductivity reconstruction and has 3 fields, which are the depth, age, and conductivity of the diatom reconstruction. The dimension of diatom content in each subtable is the percentage of percent. The units of sample depth, water depth, age, longitude, latitude, altitude, ion content and conductivity are cm, m, AD, ° east longitude, ° north latitude, m, mg/L, and μS/cm, respectively. The diatom samples are collected from approximately 90 lakes on the Tibetan Plateau within a longitude range of 84.528 -102.360 °E and a latitude range of 28.148-38.897 °N; altitude: 2797-5180 m.
YANG Xiangdong
This dataset contains data on the lake core sporopollen spectrum and temperature/precipitation reconstruction sequence of Yamdrog Yumtso Lake in the southern Tibetan Plateau. It is used to study the environmental changes in the Yamdrog Yumtso region by 20 ka. It is obtained by the sporopollen analysis method. This data set is obtained by laboratory measurement and calculation. The samples and data are collected and identified in strict accordance with relevant operating procedures at all stages. There are three subtables in this dataset. The first two tables comprise the following analysis data of TC1 pore sporopollen samples. Field 1: Sample Number Field 2: Sample Depth Unit: cm Field 3: Sample Age Unit: aBP Field 4: Total sporopollen concentration Units: granules/gram Field 5: Total Pollen Granules Unit: Number of grains Field 6: Total number of indicative pollen Unit: Number of grains Field 7: Identification of indicative pollen number Unit: Number of grains Field 8: Sample Weight Unit: Grams Field 9: Concentration Coefficient Units: granules / gram Field 1: Sample Number Field 2: Plant species Field 3: Pollen content Unit: % The third subtable is the reconstructed temperature precipitation and has 6 fields. Field 1: Sample Code Field 2: Sample Name Field 3: Depth Unit: cm Field 4: Age Unit: aBP Field 5: Average annual temperature Unit: 0.1 °C Field 6: Annual precipitation Unit: 0.1 mm The rock core was collected from the Yamdrog Yumtso Basin in the southern part of the Tibetan Plateau. The approximate sampling location is 90°27′E,28°56′N, and the altitude there is 4425 m.
WANG Junbo LV Houyuan
This dataset contains the sequence data of the lake core TOC, CaCO₃, particle size and environmental magnetism parameters from 600 years to 1998 of Yamdrog Yumtso in the southern part of the Tibetan Plateau. It is used to study the environmental changes in the Yamdrog Yumtso region in the 1400 years. This data set is obtained from laboratory measurements. The data are obtained immediately after the completion of the instrument or experiment. The samples and data are collected in strict accordance with relevant operating procedures at all stages and comply with the laboratory operating standards. The TOC analysis is undertaken by a CS-344 analyzer, The CaCO₃ content is measured by the general chemical method, the particle size is measured with a Malvern Mastersizer 2000 laser particle sizer, and the environmental magnetism parameters are measured with a Kappa Bridge, DIGICO magnetometer and superconducting magnetometer. The rock core was collected from Chen Co Lake in the Yamdrog Yumtso Basin in the southern part of the Tibetan Plateau; the approximate sampling location is 90.49E, 28.93N, and the lake’s elevation is 4420 m.
ZHU Liping
This dataset contains the precipitation (P), river water (R) and lake water (L) isotope records for Lhasa and the Yamdrog Yumtso basin (including Yamdrog Yumtso 90°08′ E - 91°45′ E, 28°27′ N - 29°12′ N, 4440 m, and Pumayum Co 90°13′ E - 90°33′ E, 28°29′ N - 28°38′ N, 5030 m) and the Nam Co Basin (90°16′ E - 91°03′ E, 30°30′ N - at 30°56′ N, 4718 m) on the Tibetan Plateau. It can be used for studies on stable isotope observations of precipitation, river water and lake water in typical areas of the plateau. The precipitation, river and lake water samples are collected in selected typical areas, and the values of stable isotopes are measured by a gas stable isotope ratio mass spectrometer (MAT-253-IRMS) after sealed storage. A data sheet is entered by a specific person based on the measurement results. The data in this dataset are from observations and measurements obtained in strict accordance with the sample collection specifications and have been published in relevant academic journals; the stable isotope of all samples is measured using the MAT-253 gas mass spectrometer at the Key Laboratory of Environment Changes and Land Surface Processes of the Institute of Tibetan Plateau Research, Chinese Academy of Sciences. Samples are cryopreserved before measurement. The measurement results are the part per thousand deviations from V-SMOW; some obvious error data are eliminated when processing to generate the data table.
YAO Tandong
This is the core 14C dating data of Selincuo long drill in 2017. It obtains the age information of lake sediments, and makes a time scale for the next step of environmental indicator analysis. The data is measured by the US BETA laboratory.
WANG Junbo
This is the core XRF scan data of Selincuo Lake in 2017. The main parameters include magnetic susceptibility and the abundance of each mineral element.
WANG Junbo
In this dataset samples were obtained from groundwater outcrop points and surface water points through the field hydrogeological survey of mabongshan, and the analysis data of deuterium - oxygen - 18 and tritium were obtained by sending them to the laboratory with relevant qualification. This dataset can obtain the isotopic information of groundwater and surface water in the research area of the project, and provide data reference for the water circulation law in the research area.
GUO Yonghai
Original information on the long-term dry-wet index (1500-2000) in western China is obtained by integrating data on dry-wet/drought-flood conditions and precipitation amounts in the western region published over more than a decade. The integrated data sets include tree rings, ice cores, lake sediments, historical materials, etc., and there are more than 50 such data sets. In addition to widely collecting representative data sets on dry-wet changes in the western region, this study also clarifies the main characteristics of the dry-wet changes and climate zones in the western region, and the long-term dry-wet index sequence was generated by extracting representative data from different zones. The data-based dry-wet index sequence has a 10-year temporal resolution for five major characteristic climate zones in the western region over nearly four hundred years and a high resolution (annual resolution) for three regions over the past five hundred years. The five major characteristic climate zones in the western region with a 10-year dry-wet index resolution over the last four hundred years are the arid regions, plateau bodies, northern Xinjiang, Hetao region, and northeastern plateau, and the three regions with a annual resolution over the last five hundred years are the northeastern plateau, Hetao region, and northern Xinjiang. For a detailed description of the data, please refer to the data file named Introduction of Dry-Wet Index Sequence Data for West China.doc.
QIAN Weihong LIN Xiang
In the mid-latitude region of Asia, the southeastern region is humid and affected by monsoon circulation (thus, it is referred to as the monsoon region), and the inland region is arid and controlled by the other circulation patterns (these areas include the cold and arid regions in the northern Tibetan Plateau, referred to as the westerly region). Based on the generalization of the climate change records published in recent years, the westerly region was humid in the mid-late Holocene, which was significantly different from the pattern of the Asian monsoon in the early-middle Holocene. In the past few millennia, the westerly region was arid during the Medieval Warm Period but relatively humid during the Little Ice Age. In contrast, the oxygen isotope records derived from a stalagmite in the Wanxiang Karst Cave showed that the monsoon precipitation was high in the Medieval Warm Period and low during the Little Ice Age. In the last century, especially in the last 50 years, the humidity of the arid regions in the northwest has increased, while the eastern areas of northwestern and northern China affected by the monsoon have become more arid. Moreover, in the northern and southern parts of the Tibetan Plateau, which are affected by the westerlies and the monsoon, respectively, the precipitation changes on the interdecadal and century scales have also shown an inverse phase. Based on these findings, we propose that the control zone of the westerly belt in central Asia has different humidity (precipitation) variation patterns than the monsoon region on every time scale (from millennial to interdecadal) in the modern interglacial period. The integrated research project on Holocene climate change in the arid and semi-arid regions of western China was a major research component of the project Environmental and Ecological Science for West China, which was funded by the National Natural Science Foundation of China. The leading executive of the project was Professor Fahu Chen from Lanzhou University. The project ran from January 2006 to December 2009. The data collected by the project include the following: 1. The integrate humidity data over the Holocene in the arid regions of Central-East Asia and 12 lakes (11000-0 cal yr BP): including Lake Van, Aral Sea, Issyk-Kul, Ulunguhai Lake, Bosten Lake, Barkol Lake, Bayan Nuur, Telmen Lake, Hovsgol Nuur, Juyan Lake, Gun Nuur and Hulun Nuur. 2. The integrated humidity data over the past millennium in the arid regions of Central-East Asia and at five research sites (1000-2000): including Aral Sea, Guliya, Bosten Lake, Sugan Lake, and the Badain Juran desert. Data format: excel table.
CHEN Fahu