The datasets of “Land Cover Map of Heihe River Basin” provide monthly land cover classification data in 2012-2013. The HJ-1/CCD data with both high spatial resolution (30 m) and high temporal (2 days) frequency was used to construct the time series data. The NDVI curves from the time series HJ-1/CCD data can depict the variation of typical land surface. Different land use type has different NDVI curve. Rules were set to extract every land use type information. The datasets of “Land Cover Map of Heihe River Basin” hold the traditional land use types including water bodies, urban and built-up, croplands, evergreen coniferous forests, deciduous broadleaf forests and so on. Crop type classification (including maize, spring wheat, highland barely, rape and so on), snow and ice and glaciers information updates, make the datasets more detailed. Compared with previous land cover map and other products, the classification result of the datasets is visually bette. Especially in middle stream, the accuracy of crop classification is quite high compared with the data from the ground campaign. The accuracy of land cover map of the datasets in 2012 was evaluated using very high spatial resolution remote sensing data within Google Earth and data from campaign, and the overall accuracy can be as high as 92.19%. In a word, the datasets of “Land Cover Map of Heihe River Basin” is not only high in overall accuracy, but also more detailed in crop fine classification. Furthermore, it updated some new classes like glaciers and snow. The datasets of “Land Cover Map of Heihe River Basin” are consequently the classification datasets with the highest accuracy and most detailed information up to now.
ZHONG Bo Aixia Yang
This data set includes the information of 21 conventional meteorological observation stations in Heihe River Basin and its surrounding areas, of which Wutonggou and Quixote stations have been cancelled in the 1980s, and other stations have operated since the establishment of the station. Station name, longitude and latitude 1. Mazong mountain 97.1097 41.5104 2. Yumen town 97.5530 39.8364 3. Wutonggou 98.3248 40.4697 4. Jiuquan 98.4975 39.7036 5. Jinta 98.9058 39.9988 6. Dingxin 99.5117 40.3080 7. Gaotai 99.7907 39.3623 8. Linze 100.165 39.1385 9. Sunan 99.6178 38.8399 10. Yeniugou 99.5830 38.4167 11. Tole 98.0147 39.0327 12. Ejina Banner 101.088 41.9351 13. Guaizi Lake 102.283 41.3662 14. Zhangye 100.460 38.9124 15. Shandan 101.083 38.7746 16. Folk music 100.826 38.4376 17. Alxa Right Banner 101.429 39.1407 18. Yongchang 101.578 38.1771 19. Qilian 100.238 38.1929 20. Gangcha 100.111 37.2478 21. Menyuan 101.379 37.2513 22. Gekkot 99.7063 41.9183 23. Jiayuguan 98.2241 39.7975
National Meteorological Information Center
China's administrative regions are basically divided into three levels: provinces (autonomous regions, municipalities directly under the central government), counties (autonomous counties, cities), townships (nationality townships, towns). In order to meet the needs of user statistics and cartography, we have published 1:1 million national administrative division data sets according to the national basic geographic information center. The administrative division data of Heihe River Basin were prepared. This data reflects the current situation of administrative divisions in Heihe River basin around 2008, including the information of provincial, regional and county-level administrative divisions. Its main attributes (such as area, code of administrative divisions, province (autonomous region), city (region, autonomous prefecture)) come from China's administrative divisions published in 2008.
WU Lizong
The data comes from the Harmonized World Soil Database (HWSD) constructed by the Food and Agriculture Organization of the United Nations (FAO) and International Institute for Applied System Analysis in Vienna (IIASA), which released version 1.1 on March 26, 2009. The data resolution is 1 km. The data source in China is 1: 1 million soil data. The soil classification system used is mainly FAO-90. The main fields of the soil property sheet include: SU_SYM90 (name of soil in FAO90 soil classification system) SU_SYM85 (FAO85 classification) T_TEXTURE (top soil texture) DRAINAGE (19.5); ROOTS: String (depth classification to the bottom of the soil with obstacles); SWR: String (characteristics of soil water content); ADD_PROP: Real (specific soil type in the soil unit related to agricultural use); T_GRAVEL: Real (gravel volume percentage); T_SAND: Real (sand content); T_SILT: Real (silt content); T_CLAY: Real (clay content); T_USDA_TEX: Real (USDA Soil Texture Classification); T_REF_BULK: Real (soil bulk density); T_OC: Real (organic carbon content); T_PH_H2O: Real (pH) T_CEC_CLAY: Real (cation exchange capacity of the sticky layer soil); T_CEC_SOIL: Real (soil cation exchange capacity) T_BS: Real (basic saturation); T_TEB: Real (exchangeable base); T_CACO3: Real (carbonate or lime content) T_CASO4: Real (sulfate content); T_ESP: Real (exchangeable sodium salt); T_ECE: Real (conductivity). The attribute field at the beginning of T_ indicates the upper soil attribute (0-30 cm), and the attribute field at the beginning of S_ indicates the lower layer soil attribute (30-100 cm) (FAO 2009). This data provides model input parameters for Earth system modelers, and in agricultural perspective, it can be used to study eco-agricultural divisions, food security, and climate change.
Food and Agriculture Organization of the United Nations(FAO)
1、 The basin boundary of Heihe River Basin is based on the high-precision digital elevation model (DEM), which is obtained by using GIS hydrological analysis function analysis, and refers to remote sensing image, topographic map, ground investigation and previous research results. The surface catchment area of Heihe River basin covers an area of about 255000 km2, starting from the middle section of Qilian Mountains in the south, the Gobi Altai Mountains in Mongolia in the north, the Mazong mountains in the West and the Yabulai mountains in the East. Compared with the traditional Heihe River Basin, the new basin has increased Badain Jilin desert, Guizi lake, the northern part of Mazong mountain and the southern foot of Altai Mountain in Outer Mongolia Gobi. Explanation: the nanshihe River and beishihe River are the rivers formed by the leakage of the alluvial fan of Shule River. They form an independent hydrological unit (Huahai basin water systems) with Ganhaizi as the end lake, together with youYou River, Baiyang River and duanshankou river. The relationship between the hydrological unit and the Heihe River Basin is greater than that between the hydrological unit and the Shule River, which should be regarded as a part of the Heihe River Basin. Considering the current situation of modern water resources utilization, Beishi river has been directly connected with the main stream of Shule River through artificial transformation, and it is an important channel for water transmission from Shule River to Ganhaizi, and has become an important tributary of Shule River in fact. Under the influence of a series of water conservancy projects, the surface hydraulic connection between youyou River, Baiyang River and Shule River is far greater than that between youyou River and TaoLai river. 2、 Revised boundary of Yellow River Commission in Heihe River Basin On the basis of the Heihe River basin boundary revised by the Yellow River Water Conservancy Commission of the Ministry of water resources in 2005, the revised boundary of Heihe River Basin is obtained by using high-precision digital elevation model (DEM), reference remote sensing image, 1:100000 topographic map, ground investigation and other data. The basin boundary is about 76000 km2, among which the upper Qilian mountain middle section boundary is extracted strictly according to the ridge line by using DEM according to the GIS hydrological analysis function, and the lower north boundary is divided according to the boundary line according to the international convention. 3、 Study area boundary of Heihe River Basin According to the extended study area generated by the basin boundary of Heihe River Basin, it is mainly for the demand of model data input. The above three boundaries are to provide a unified study area boundary for the planned project of Heihe River Basin. It is suggested to use the revised boundary of Heihe River Basin yellow Committee as the core study area boundary.
WU Lizong
The data is the digitization of the Heihe River basin part of the 1:1 million Vegetation Atlas of China, 1:1000, 000 Vegetation Atlas of China is edited by academician Hou Xueyu, a famous vegetation ecologist (Hou Xueyu, 2001). It is jointly compiled by more than 250 experts from 53 units such as research institutes of Chinese Academy of Sciences, relevant ministries and commissions, relevant departments of various provinces and regions, colleges and universities. It is another summative achievement of vegetation ecologists in China over 40 years after the publication of monographs such as vegetation of China Basic map of natural resources and natural conditions of the family. It is based on the rich first-hand information accumulated by vegetation surveys carried out throughout the country over the past half century, and the materials obtained by modern technologies such as aerial remote sensing and satellite images, as well as the latest research achievements in geology, soil science and climatology. It reflects in detail the distribution of vegetation units of 11 vegetation type groups, 796 formations and sub formations of 54 vegetation types, horizontal and vertical zonal distribution laws, and also reflects the actual distribution of more than 2000 dominant species of plants, major crops and cash crops in China, as well as the close relationship between dominant species and soil and ground geology. The atlas is a kind of realistic vegetation map, reflecting the recent quality of vegetation in China.
The surface air temperature dataset of the Tibetan Plateau is obtained by downscaling the China regional surface meteorological feature dataset (CRSMFD). It contains the daily mean surface air temperature and 3-hourly instantaneous surface air temperature. This dataset has a spatial resolution of 0.01°. Its time range for surface air temperature dataset is from 1979 to 2018. Spatial dimension of data: 73°E-106°E, 23°N-40°N. The surface air temperature with a 0.01° can serve as an important input for the modeling of land surface processes, such as surface evapotranspiration estimation, agricultural monitoring, and climate change analysis.
DING Lirong ZHOU Ji WANG Wei
This data includes the basic terrain data, soil data, meteorological data, land use / land cover data, etc. needed for SWAT model operation. All maps and relevant point coordinates (meteorological station, hydrological station) adopt the coordinate system of Gauss Kruger projection which is consistent with the basic topographic map of our country. Data content includes: a) The basic topographic data include DEM and river network. The size of DEM grid is 50 * 50m, and the drainage network is manually digitized from 1:100000 topographic map. b) Soil data: including soil physics, soil chemistry and spatial distribution of soil types. The scale of digital soil map is 1:1 million, which is converted into grid format of ESRI, with grid size of 50 * 50m. Each soil profile can be divided into up to 10 layers. The sampling index of soil texture required by the model adopts the American Standard. The parameters are from the second National Soil Census data and related literature. c) Meteorological data: (1) Temperature: the data of daily maximum temperature, daily minimum temperature, wind speed and relative humidity are from the daily observation data of Qilian, Shandan, tole, yeniugou and Zhangye meteorological stations in and around the basin, with the period from 1999 to 2001. (2) Precipitation: the rainfall data comes from five hydrological stations in and around the basin, i.e. OBO (1990-1996), Sunan (1990-2000), Qilian (1990-2000), Yingluoxia (1990-2000), zamashk (1990-2000), Shandan (1999-2001), tole (1999-2001), yeniugou (1999-2001), Zhangye (1999-2001) and Qilian County (1999-2001) Observation data. (3) Wind speed and relative humidity: wind speed and relative humidity come from the daily observation data of 5 meteorological stations in Shandan, tole, yeniugou, Zhangye and Qilian county. The period is from 1999 to 2001. (4) Solar radiation: solar radiation has no corresponding observation data and is generated by model simulation. d) Land use / land cover: 1995 land use data, scale 1:100000. Convert it to grid format of ESRI, with grid size of 50 * 50m. e) Meteorological data simulation tool (weather generator) database: the weather data simulation tool of SWAT model can simulate and calculate the daily meteorological input data required by the model operation according to the monthly statistical data for many years without the actual daily observation data, and can also carry out the interpolation of incomplete observation data. The meteorological data are from the surrounding meteorological stations.
NAN Zhuotong
The Landuse/Landcover data of the Heihe River Basin in 2000 ( newly compiled in 2012), was finished by the Remote Sensing Laboratory of Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, using satellite remote sensing, based on the LandsaTM and ETM remote sensing data around 2000, combing field investigation and verification, thus leading to the establishment of the Heihe River Basin 1:10. 10,000 land use/land cover imagery and vector database. The main contents are: 1:100,000 land use graphic data and attribute data in the Heihe River Basin. The Heihe River Basin 1:100,000 (2011) land cover data and the previous land cover data use the same layered land cover classification system, the whole basin is divided into six first-class categories (cultivated land, woodland, grassland, waters, urban and rural residents, industrial and mining land and unused land), 25 secondary classes; data types are vector polygons, stored as Shape format. Land cover classification attributes: Primary type, secondary type, attribute coding, spatial distribution position Cultivated land: Plain dry land, 123, is mainly distributed in basin, Piedmont zone, river alluvial, diluvial plain or lacustrine plain (lack of water, irrigation condition is poor). Hilly dry land, 122, is mainly distributed in Hilly areas. Generally speaking, land blocks distribute on gentle slopes, ridges and mats of hills. Mountainous dry land, 121, is mainly distributed in mountainous areas, with the elevation below 4000 meters (gentle slope, mountainside, steep slope platform, etc.) and the Piedmont zones. Woodland: There is woodland (arbor), 21, is mainly distributed in the mountains (below 4000 meters ) or on the slopes of the mountains, valleys, hills, plains and so on. Shrub land, 22, is mainly distributed in higher mountain areas (below 4500 meters), most of which distribute in hillsides, valleys and sandy land. Sparse forest land, 23, is mainly distributed in the mountains, hills, plains and sandy land, and on the edge of the Gobi (loam, gravel). Other woodlands, 24, are mainly distributed in the oasis field, around rivers, roadsides and rural settlements. Grassland: Highly covered grassland, 31, is mainly distributed in mountainous areas (slow slopes), hills (steep slopes) and inter-river beaches, Gobi, sand dunes, etc. Mid-covered grassland, 32, is mainly distributed in relatively dry areas (Gobi, low-lying land and sandy land,sand dunes, etc.). The low-cover grassland, 33, grows mainly in drier areas (on the loess hills and on the edge of the sand). Waters: Channel, 41 is mainly distributed in plains, inter-river cultivated land and inter-mountain valleys. Lake, 42, is mainly distributed in low-lying areas. Reservoir pit, 43, is mainly distributed in plains and valleys between rivers, surrounded by residential areas and cultivated land. Glacier and permanent snow cover, 44, mainly distribute at the top of (over 4000) alpine regions. Flood land, 46, is mainly distributed in the high and low hillside gullies, the piedmont, the plain lowlands, and the edge of the river and lake basins. Residents land: Urban land, 51, is mainly distributed in plains, mountain basins, slopes and valleys. Rural residential land, 52, are mainly distributed in oases, cultivated land and roadsides, on the tablelands and the slopes. Industrial land and traffic land, 53, are generally distributed in the periphery of towns, areas with fairly developed transportation and industrial mining areas. Unutilized land: Sandy land, 61, is mostly distributed in the basin, on both sides of the river, in the river bay and on the periphery of the Piedmont and Gobi. Gobi, 62, is mainly distributed in the Piedmont belt with strong wind erosion and sediment transport. Saline and alkaline land, 63, is mainly distributed in dry lakes, lakeside and areas relatively low with easy water accumulation. Swamp, 64, is mainly distributed in relatively low areas with easy water accumulation. Bare soil, 65, is mainly distributed in arid areas (steep hillsides, hills and gobi), with vegetation coverage less than 5%. Bare rock, 66, is mainly distributed in extremely arid rocky mountainous areas (windy and rainless). The other, 67 mainly distributes in bare rocks formed by freezing and thawing above 4000 meters, also known as alpine tundra.
WANG Jianhua
China 1:100000 data of land use is a major application in the Chinese Academy of Sciences "five-year" project "the national resources and environment remote sensing macroscopic investigation and study of dynamic organized 19 Chinese Academy of Sciences institute of remote sensing science and technology team, by means of satellite remote sensing, in three years based on Landsat MSS, TM and ETM remote sensing data established China 1:100000 images and vector of land use database.The main contents include: China 1:100,000 land use data;China 1:100,000 land use graph data and attribute data. The data was directly clipped from China's 1:100,000 land-use data.A hierarchical land cover classification system was adopted for the land use data of heihe basin of 1:100,000, and the whole basin was divided into 6 primary categories (arable land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 26 secondary categories.The data type is vector polygon, which is stored in Shape format.There are two types of data projection: WGS84/ALBERS;Data coverage covers the new heihe watershed boundary (lack of outer Mongolia data). Land use classification attributes: The first class type and the second class type attributes encode the spatial distribution position Cultivated paddy field 113 is mainly distributed in alluvial plain, basin and valley Cultivated paddy field 112 distributed in hilly valley narrow valley platform or beach (with irrigation conditions) Cultivated paddy field 111 is mainly distributed in mountain valley narrow valley platform or beach (with better irrigation conditions) Arable land 124 is mainly distributed in mountainous areas, the slope is generally more than 25 degrees (belongs to the steep slope hanging land), should be returned to forest. Cultivated dry land 123 is mainly distributed in basins, piedmont belts, river alluvial, diluvial or lacustrine plains (water shortage and poor irrigation conditions). Cultivated dry land 122 is mainly distributed in hilly areas (shaanxi, gan, ning, qing).In general, the plot is distributed on gentle slopes and x and sockets of hills. Arable land 121 is mainly distributed in the mountainous area, with an elevation of 4000 meters below the slope (gentle slope, mountainside, steep slope platform, etc.) and mountain front belt. Woodlands have woodlands (trees) 21 mainly distributed in the mountains (below 4000 meters above sea level) or in the slope, valley two slopes, mountain tops, plains.In qinghai nanshan, qilian mountains are. Woodland shrub 22 is mainly distributed in the higher mountain areas (below 4500 m), most of the distribution of hillside and valley and sand. Forest dredging 23 mainly distributed in the mountains, hills, plains and sandy land, gobi (soil, gravel) edge. Other woodlands 24 are mainly distributed in the oasis ridge, river, roadside and rural residential areas around. Grassland 31 is generally distributed in mountainous areas (gentle slopes), hills (steep slopes) and interriver beaches, gobi desert, sandy hills, etc. The covered grassland 32 is mainly distributed in dry places (next door low-lying land and sandy hills, etc.). Grassland low cover grassland 33 mainly grows in drier places (loess hills and sandy edges). The river channel 41 is mainly distributed in the plain, the cultivated land between the rivers and the valleys in the mountains. Water lakes are mainly distributed in low-lying areas. The reservoirs are mainly distributed in the intermountain lowlands and intersandy hills in qinghai province. Water area glaciers and permanent snow 44 mainly distributed in the plain, the valley between the river, there are surrounding residents and arable land. Waters and beaches are mainly distributed on the top of (over 4000) mountains.
WANG Jianhua LIU Jiyuan
The DEM elevation model data set of 1km in heihe river basin generates DEM grid data based on China 1:250,000 digital contour line and elevation point data interpolation released by national basic geographic information center (http://ngcc.sbsm.gov.cn). The data includes Albers projection and longitude and latitude coordinates.A large amount of surface morphology information can be extracted from DEM, including the slope, slope direction and the relationship among cells of the watershed grid, which is an important source data for watershed research.
National Basic Geographic Information Center
This data set contains the data of meteorological element gradient observation system of dashman superstation in the middle reaches of heihe hydrometeorological observation network from January 1, 2017 to December 31, 2017.The station is located in the farmland of daman irrigation district of zhangye city, gansu province.The longitude and latitude of the observation point are 100.3722e, 38.8555n and 1556m above sea level.The wind speed/direction, air temperature and relative humidity sensors are located at 3m, 5m, 10m, 15m, 20m, 30m and 40m respectively, with a total of 7 layers, facing due north.The barometer is installed at 2m;The tilting bucket rain gauge was installed at about 8m on the west side of the tower, with a height of 2.5m;The four-component radiometer is installed at 12m, facing due south;Two infrared thermometers are installed at 12m, facing due south and the probe facing vertically downward.Soil heat flow plate (self-calibration formal) (3 pieces) were buried in the ground 6cm in turn, 2m away from the tower body due south, two of which (Gs_2 and Gs_3) were buried between the trees, and one (Gs_1) was buried under the plants.The mean soil temperature sensor TCAV is buried 2cm and 4cm underground, facing due south and 2m away from the tower body.The soil temperature probe is buried at 0cm of the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil water sensor is buried 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The photosynthetic effective radiometer is installed at 12m with the probe facing vertically upward.Four other photosynthetically active radiometers were installed above and inside the canopy, 12m above the canopy (one probe vertically up and one probe vertically down), and 0.3m above the canopy (one probe vertically up and one probe vertically down), facing due south. The observation items are: wind speed (WS_3m, WS_5m, WS_10m, WS_15m, WS_20m, WS_30m, WS_40m) (unit: m/s), wind direction (WD_3m, WD_5m, WD_10m, WD_15m, WD_20m, WD_30m, WD_40m) (unit:Air temperature and humidity (Ta_3m, Ta_5m, Ta_10m, Ta_15m, Ta_20m, Ta_30m, Ta_40m and RH_3m, RH_5m, RH_10m, RH_15m, RH_20m, RH_30m, RH_40m) (unit: Celsius, percentage), air pressure (Press) (unit: hpa), precipitation (Rain) (unit: mm), four-component radiation (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit:Watts/m2), surface radiant temperature (IRT_1, IRT_2) (unit: Celsius), average soil temperature (TCAV) (unit: Celsius), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts/m2), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit:Soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm)Mmol/m s) and the upward and downward photosynthetic effective radiation (PAR_D_up, PAR_D_down) under the canopy (in mmol/m s). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;Due to sensor problems, the soil heat flux G2 was wrong;Due to problems with the collector, the meteorological data were wrong;Part of soil data was wrong due to collector problem;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: 2017-6-10:10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin LI Xin CHE Tao XU Ziwei REN Zhiguo TAN Junlei
This set of data is the simulation result of the newly developed land eco-hydrological model CLM_LTF.This model is on top of the land-surface process model CLM4.5 developed by NCAR, coupling the groundwater lateral flow module and considering the role of human irrigation. The model runs from 1981 to 2013, with a spatial resolution of 30 arc seconds (0.0083 degrees), a time step of 1,800 seconds, and a simulation range of the heihe river basin.Air force in 1981-2012 is used by the Chinese academy of sciences institute of the qinghai-tibet plateau of qinghai-tibet plateau more layers of data assimilation and simulation center development areas of China high space-time resolution ground meteorological elements drive data set, air is forced to use 2013 national meteorological information center of wind pressure high resolution made by the wet precipitation temperature radiation data set.The land cover data is a 1km land cover grid data set for the MICLCover heihe river basin, and the irrigation data is shown in "monthly 30-arcsecond resolution surface water and groundwater irrigation data set for the heihe river basin 1981-2013" of the scientific data center for cold and dry regions.The mode output is the monthly average. The document is described as follows: Groundwater depth data: heihe_zwt.nc 2cm soil moisture data: heihe_h2osoi_2cm. nc 100cm soil moisture data: heihe_h2osoi_100cm.nc Evaporation data: Heihe_evaptanspiration. Nc The data is in netcdf format.There are three dimensions, which are month, lat, and lon. Where, month is a month, and the value is 0-395, representing each month from 1981 to 2013. Lat is grid latitude information, and lon is grid longitude information. The data is stored in the data variable. The underground water depth data is in m, the soil moisture data is in m^3/m^3, and the evapotranspiration data is in mm/month
XIE Zhenghui
The data was directly clipped from China's 1:100,000 land-use data.China 1:100000 data of land use is a major application in the Chinese Academy of Sciences "five-year" project "the national resources and environment remote sensing macroscopic investigation and study of dynamic organized 19 Chinese Academy of Sciences institute of remote sensing science and technology team, by means of satellite remote sensing, in three years based on Landsat MSS, TM and ETM remote sensing data established China 1:100000 images and vector of land use database.A hierarchical land cover classification system was adopted for the land use data of heihe basin of 1:100,000, and the whole basin was divided into 6 primary categories (arable land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 26 secondary categories.The data type is vector polygon, which is stored in Shape format.There are two types of data projection: WGS84/ALBERS;Data coverage covers the new heihe watershed boundary (lack of outer Mongolia data).
LIU Jiyuan WANG Jianhua
This dataset includes data recorded by the Heihe integrated observatory network obtained from an observation system of Meteorological elements gradient of Daman Superstation from January 1 to December 31, 2018. The site (100.372° E, 38.856° N) was located on a cropland (maize surface) in the Daman irrigation, which is near Zhangye city, Gansu Province. The elevation is 1556 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (AV-14TH;3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 2.5 m, 8 m in west of tower), four-component radiometer (PIR&PSP; 12 m, towards south), two infrared temperature sensors (IRTC3; 12 m, towards south, vertically downward), photosynthetically active radiation (LI190SB; 12 m, towards south, vertically upward; another four photosynthetically active radiation, PQS-1; two above the plants (12 m) and two below the plants (0.3 m), towards south, each with one vertically downward and one vertically upward), soil heat flux (HFP01SC; 3 duplicates with G1 below the vegetation; G2 and G3 between plants, -0.06 m), a TCAV averaging soil thermocouple probe (TCAV; -0.02, -0.04 m), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (CS616; -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), wind direction (WD_3 m, WD_5 m, WD_10 m, WD_15 m, WD_20 m, WD_30m, and WD_40 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2, and Gs_3, between plants) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content), above the plants photosynthetically active radiation of upward and downward (PAR_U_up and PAR_U_down) (μmol/ (s m-2)), and below the plants photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day.The meterological data during September 17 and November 7 and TCAV data after November 7 were wrong because the malfunction of datalogger. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
LIU Shaomin, XU Ziwei LI Xin CHE Tao XU Ziwei REN Zhiguo TAN Junlei
The soil texture dataset of the Heihe River Basin (2011) is compiled by LIU Chao et al. (2011) by using the SOLIM model. Based on the famous Jenny equation of soil science, and according to the environmental factors such as climate, biology, topography and parent material, knowledge mining and fuzzy logic are combined on the basis of existing soil texture maps and soil profiles in Heihe River Basin. It is produced and integrated with thematic maps of glaciers and lakes. According to the different characteristics of the six ecological zones in Heihe River Basin, different mapping methods are used in the upper, middle and lower reaches. According to the different characteristics of six ecological zones in Heihe River Basin, different mapping methods are used in the upper, middle and lower reaches. The data is in grid format with 1KM spatial resolution and WGS-84 projection. Soil texture attributes and categories represent 0-30 cm topsoil texture attributes, derived from depth-weighted averages. The texname in the attribute table indicates the soil texture type name. Sandrange, siltrange, and clayrange respectively represent the sand, powder, and clay content ranges in the USDA soil triangle. Sandaverage, siltaverage and clayaverage are taken from the measured soil profiles, the average content of sand, silt and clay particles as the sand, silt and clay content of the soil type. (Note: The soil particle content of clay loam is derived from the soil quality map of Beijing Normal University). The soil texture classification standard is USDA, the sand grain size is defined as (2~0.05mm), the silt particle size is (0.05~0.002mm) and the clay size is defined as (<0.002mm).
LIU Chao
Reservoir refers to the artificial water area formed in valley, river or low-lying area by dam, dike, sluice, weir and other projects. It is the main measure used for runoff regulation to change the distribution process of natural water resources and plays an important role in social and economic development. Many reservoirs have been built in Heihe River Basin, which has an important impact on the utilization of water resources in this area. In order to facilitate the mapping needs of users, we use topographic map and remote sensing image to prepare the reservoir distribution map of the Heihe River Basin. The location and shape of the reservoir are mainly obtained by manual interpretation based on Google map image, which basically shows the current situation of the reservoir distribution in the Heihe River Basin around 2010.
National Basic Geographic Information Center
This data set contains the data of meteorological element gradient observation system of the middle reaches of heihe hydrometeorological observation network from January 1, 2015 to December 31, 2015.The station is located in the farmland of daman irrigation district of zhangye city, gansu province.The longitude and latitude of the observation point are 100.3722e, 38.8555n and 1556m above sea level.The wind speed/direction, air temperature and relative humidity sensors are located at 3m, 5m, 10m, 15m, 20m, 30m and 40m respectively, with a total of 7 layers, facing due north.The barometer is installed at 2m;The tilting bucket rain gauge was installed at about 8m on the west side of the tower, with a height of 2.5m;The four-component radiometer is installed at 12m, facing due south;Two infrared thermometers are installed at 12m, facing due south and the probe facing vertically downward.Soil heat flow plate (self-calibration formal) (3 pieces) were buried in the ground 6cm in turn, 2m away from the tower body due south, two of which (Gs_2 and Gs_3) were buried between the trees, and one (Gs_1) was buried under the plants.The mean soil temperature sensor TCAV is buried 2cm and 4cm underground, facing due south and 2m away from the tower body.The soil temperature probe is buried at 0cm of the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil water sensor is buried 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The photosynthetic effective radiometer is installed at 12m with the probe facing vertically upward.Four other photosynthetically active radiometers were installed above and inside the canopy, 12m above the canopy (one probe vertically up and one probe vertically down), and 0.3m above the canopy (one probe vertically up and one probe vertically down), facing due south. The observation items are: wind speed (WS_3m, WS_5m, WS_10m, WS_15m, WS_20m, WS_30m, WS_40m) (unit: m/s), wind direction (WD_3m, WD_5m, WD_10m, WD_15m, WD_20m, WD_30m, WD_40m) (unit:Air temperature and humidity (Ta_3m, Ta_5m, Ta_10m, Ta_15m, Ta_20m, Ta_30m, Ta_40m and RH_3m, RH_5m, RH_10m, RH_15m, RH_20m, RH_30m, RH_40m) (unit: Celsius, percentage), air pressure (Press) (unit: hpa), precipitation (Rain) (unit: mm), four-component radiation (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit:Watts/m2), surface radiant temperature (IRT_1, IRT_2) (unit: Celsius), average soil temperature (TCAV) (unit: Celsius), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts/m2), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit:Soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm)Mmol/m s) and the upward and downward photosynthetic effective radiation (PAR_D_up, PAR_D_down) under the canopy (in mmol/m s). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;The wind speed and direction of 3m and 5m were missing due to sensor problems between November 16 and November 25, 2015;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: June 10, 2015, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin LI Xin CHE Tao XU Ziwei REN Zhiguo TAN Junlei
This data set contains the observation data of vortex-correlograph in the middle reaches of heihe hydrometeorological observation network from January 1, 2015 to December 31, 2015.The station is located in the daman irrigation district of zhangye city, gansu province.The latitude and longitude of the observation point is 100.37223E, 38.85551N, and the altitude is 1556.06m.The rack height of the vortex correlativity meter is 4.5m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500A) is 17cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Li7500A of the eddy current system was calibrated from April 12 to 14, and data was missing. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).
LIU Shaomin LI Xin CHE Tao XU Ziwei REN Zhiguo TAN Junlei
This dataset includes data recorded by the Hydrometeorological observation network obtained from an observation system of Meteorological elements gradient of Daman Superstation between 26 September, 2012, and 31 December, 2013. The site (100.372° E, 38.856° N) was located on a cropland (maize surface) in the Daman irrigation, which is near Zhangye city, Gansu Province. The elevation is 1556 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (AV-14TH; 3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 2.5 m, 8 m in west of tower), four-component radiometer (PIR&PSP; 12 m, towards south), two infrared temperature sensors (IRTC3; 12 m, towards south, vertically downward), photosynthetically active radiation (LI190SB; 12 m, towards south, vertically upward; another four photosynthetically active radiation were installed on 28 July, 2013, PQS-1; two above the plants (12 m) and two below the plants (0.3 m), towards south, each with one vertically downward and one vertically upward), soil heat flux (HFP01SC; 3 duplicates with G1 below the vegetation; G2 and G3 between plants, -0.06 m), a TCAV averaging soil thermocouple probe (TCAV; -0.02, -0.04 m), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (CS616; -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), wind direction (WD_3 m, WD_5 m, WD_10 m, WD_15 m, WD_20 m, WD_30m, and WD_40 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2, and Gs_3, between plants) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content), above the plants photosynthetically active radiation of upward and downward (PAR_U_up and PAR_U_down) (μmol/ (s m^-2)), and below the plants photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m^-2)). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The CO2 and H2O density profile data were missing during 15 December, 2012 and 1 April, 2013 because of datalogger malfunction; the wind speed profile data were missing during 29 November, 2012 and 22 December, 2012 because the malfunction of sensors; the wind speed/direction data at 5 m height were missing from 26 October, 2012 to 27 November, 2012, and from 9 December, 2012 to 23 December, 2012 because of the sensor malfunction. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For information of hydrometeorological network or station, please refer to Liu et al.(2018), and for observation data processing, please refer to Liu et al.(2011).
LIU Shaomin LI Xin CHE Tao XU Ziwei REN Zhiguo TAN Junlei