We produced surface photosynthetic effective radiation (PAR), solar radiation (SSR) and net radiation (NR) products with 1KM resolution in the heihe basin in 2012.The temporal resolution ranges from instantaneous to hourly and daily.Day-by-day ancillary data were also produced, including aerosol optical thickness, moisture content, NDVI, snow cover, and surface albedo.Among them, PAR and SSR use the method of lookup table to directly invert by combining the stationary weather satellite and polar orbit satellite MODIS product.NR was calculated by analyzing the relationship between net short-wave and net surface radiation.Hourly instantaneous products are weighted by average and integral to obtain hourly and daily cumulative products.
Huang Guanghui
The dataset of eddy covariance observations was obtained at the Dayekou Guantan forest station (E100°15′/N38°32′, 2835m), south of Zhangye city, Gansu province, from Dec. 27, 2007 to Dec. 31, 2009. Guantan forest station was dominated by the spruce 15-20m high and the surface was covered by moss 10cm deep. All the vegetation was in good condition. The original observation items included the latitudinal wind speed Ux (m/s), the latitudinal wind speed Uy (m/s), the longitudinal wind speed Uz (m/s), the ultrasonic temperature Ts (°C), co2 consistency (mg/m^3), h2o consistency (g/m^3), air pressure (KPa) and the abnormal ultrasonic signal (diag_csat). The instrument mount-height was 20.02m, the ultrasound direction was at an azimuth angle of 74°, the distance between Li7500 and CSAT3 was 30cm and sampling frequency was 10HZ. The dataset was distributed at three levels: Level0 were the raw data acquired by instruments; Level1, including the sensible heat flux (Hs), the latent heat flux (LE_wpl), and co2 flux (Fc_wpl), were real-time eddy covariance output data and stored in .csv month by month; Level2 were processed data in a 30-minute cycle after outliers elimination, coordinates rotation, frequency response correction, WPL correction and initial quality control. The data were named as follows: station name +data level+data acquisition date. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide and Eddy Covariance Observation Manual.
LI Xin MA Mingguo Wang Weizhen Huang Guanghui TAN Junlei ZHANG Zhihui
The dataset of eddy covariance observations was obtained at the Yingke Oasis station from 27 Dec. 2007 to 31 Dec. 2009. The observation site is located in an irrigation farmland in Yingke (E100°24′37.2″/N38°51′25.7″, 1519.1m), Zhangye city, Gansu province. The experimental area, situated in the middle stream Heihe river basin and with windbreaks space of 500m from east to west and 300m from south to north, is an ideal choice for its flat and open terrain. The original observation items included the latitudinal wind speed Ux (m/s), the latitudinal wind speed Uy (m/s), the longitudinal wind speed Uz (m/s), the ultrasonic temperature Ts (°C), co2 consistency (mg/m^3), h2o consistency (g/m^3), air pressure (KPa) and the abnormal ultrasonic signal (diag_csat). The instrument mount was 2.81m, the ultrasound direction was at an azimuth angle of 0°, the distance between Li7500 and CSAT3 was 30cm and the sampling frequency was 10HZ/s. The dataset was distributed at three levels: Level0 were the raw data acquired by instruments; Level1, including the sensible heat flux (Hs), the latent heat flux (LE_wpl), and co2 flux (Fc_wpl), were real-time eddy covariance output data and stored in .csv month by month; Level2 were processed data in a 30-minute cycle after outliers elimination, coordinates rotation, frequency response correction, WPL correction and initial quality control. The data files were named as follows: station name +data level+data acquisition date. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide and Eddy Covariance Observation Manual.
Liu Qiang LIU Qinhuo MA Mingguo Wang Weizhen Huang Guanghui ZHANG Zhihui TAN Junlei
The dataset of eddy covariance observations was obtained at the A'rou freeze/thaw observation station from Jul. 14, 2008 to Dec. 31, 2010, in Wawangtan pasture (E100°28′/N38°03′, 3032.8m), Daban, A'rou. The experimental area with a flat and open terrain slightly sloping from southeast to northwest and hills and mountains stretching outwards is an ideal horizontal homogeneous underlying surface. The original observation items included the latitudinal wind speed Ux (m/s), the latitudinal wind speed Uy (m/s), the longitudinal wind speed Uz (m/s), the ultrasonic temperature Ts (°C), co2 consistency (mg/m^3), h2o consistency (g/m^3), air pressure (KPa) and the abnormal ultrasonic signal (diag_csat). The instrument height was 2.81m, the ultrasound direction was at an azimuth angle of 0°, the distance between Li7500 and CSAT3 was 30m and sampling frequency was 10HZ/s. The instrument mount was 3.15m, the ultrasound direction was at an azimuth angle of 86°, the distance between Li7500 and CSAT3 was 22cm and sampling frequency was 10HZ/s. The dataset was released at three levels: Level0 were the raw data acquired by instruments; Level1, including the sensible heat flux (Hs), the latent heat flux (LE_wpl), and co2 flux (Fc_wpl), were real-time eddy covariance output data and stored in .csv month by month; Level2 were processed data in a 30-minute cycle after outliers elimination, coordinates rotation, frequency response correction, WPL correction and initial quality control. The data were named as follows: station name +data level+data acquisition date. As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide and Eddy Covariance Observation Manual.
Wang Weizhen MA Mingguo LI Xin JIN Rui Huang Guanghui Zhang Zhihui TAN Junlei
The data set contains all single glacial reserves (in KM3) in the Tibetan Plateau of 1970s and 2000s. This data set comes from the result data of the paper entitled "consolidating the Randolph glacier inventory and the glacier inventory of China over the Qinghai titanium plate and investigating glacier changes since the mid-20th century". The first draft of this paper has been completed and is planned to be submitted to earth system science data. The 1970s basic glacier catalog data in the dataset is extracted from Randolph glacier Inventory data set, 2000s basic glacial catalogue is from China's second glacial catalogue data set. Based on the glacial boundary extracted from the two data sets and combined with the grid based bedrock elevation data set (https://www.ngdc.noaa.gov/mgg/global/global.html, DOI: 10.7289/v5c8276m) and the glacial table obtained by a slope dependent method Based on the surface elevation data set, the single glacier reserves in the two catalogues are calculated. In addition, the calculation results of single glacier reserves obtained in this study have been compared and verified with the calculation results of partial glacier reserves, relevant remote sensing data sets, and the global glacier thickness data set based on the average of multiple glacier model sets in multiple directions, and the errors in the calculation results have also been quantified. The establishment of the data set is expected to provide the data basis for the future regional water resources estimation and glacier ablation research, and the acquisition of the data also provides a new idea for the future glacier reserves research.
WANG Zhongjing
Near-surface atmospheric driving data prepared by ETMonitor and WRF models based on remote sensing surface evapotranspiration model were used to estimate the average surface evapotranspiration of the heihe river basin with a resolution of 250m in 8 days from may to September 2012.The coordinate system is the projection of equal latitude and longitude, and the spatial range is 96.5e -- 102.5e, 37.5n -- 43N.8 days data using synthetic way of storage, the data format for GEOTIFF, naming: 2012 ddd_evapotranspiration. Tif, including a DDD, ordinal number, for example 2012121 _evapotranspiration. Tif said 2012 day ordinal number is 121-128 days, the average surface evaporation unit is mm/d.The data type is single-precision floating point with an invalid value of -9.
JIA Li
Near-surface atmospheric driving data prepared by ETMonitor and WRF models based on remote sensing surface evapotranspiration model were used to estimate the daily surface evapotranspiration of the heihe river basin at 1km from 2009 to 2011.The coordinate system is the longitude and latitude projection, and the spatial range is 96.5e -- 102.5e, 37.5n -- 43N.Using daily data storage, data format for GEOTIFF, naming: yyyyddd_EvapoTranspiration. tif, including yyyy for years, DDD for ordinal.The data type is single-precision floating point in mm/d and the invalid value is -9.
JIA Li
This data set contains the eddy related data of Zhangye National Climate Observatory from 2008 to 2009. The station is located in Zhangye, Gansu Province, with longitude and latitude of 100 ° 17 ′ e, 39 ° 05 ′ N and altitude of 1456m. For more information, see the documentation that came with the data.
Zhangye city meteorological bureau
Interaction "heihe region in field observation experiment (HEIFE)", is in the heihe river basin in hexi corridor in the middle of a 70 km by 90 km range of experimental zone for the center with water and heat exchange of a very comprehensive experiment, the interaction is the current international field the longest continuous observation on the land surface process experiment, has obtained the Eurasia hinterland typical in heihe river basin, gobi desert and oasis in arid regions different underlaying surface, such as solar radiation, atmospheric boundary layer meteorological data and oasis of meteorological data, and collect the conventional meteorological and hydrological data in the region,It has laid the foundation of observation experiment for theoretical study of land surface processes in arid areas. The heihe experimental database (HDB) (tao zehong and zuo hongchao, 1994a) comprehensively collected and systematically integrated the field observation data of heihe experiment.In the database, all observation data are divided into three categories according to the nature and purpose of observation: Category 1: normal observation period (FOP) data.It includes :(1) observation data of 5 micrometeorological stations and 5 automatic meteorological stations;(2) groundwater level data observed at four well stations;(3) distribution of blowing sand and dust and ozone observation data;(4) conventional observation data of 3 upper-air weather stations, 3 surface weather stations, 4 hydrology stations, some rain measuring stations and downhole water stations. The second category: enhanced observation period (IOP) data.It includes: observations of turbulence, tethered balloons, Sodar, Lidar, soil moisture content and composition during each strengthening period (PlOP, IOP-1, lop-2, IOP-3, IOP-4). The third category is special observation period data, which includes: biological meteorological observation (BOP), precipitation mechanism observation (iop-r) in arid areas, turbulence contrast observation (iop-c), supplementary observation data of deserts far from the oasis (iop-da) and observation data of sand sample experiment.Please refer to HEIFE database user manual for more detailed information (tao zehong et al., 1994b).
LI Xin RAN Youhua