This data is simulated by regional model WRF (version 4.2.1). In the initial field and boundary field use the meteorological fields from NASA MERRA2 reanalysis data, and the soil data from NASA GLDAS2. The resolution of the model is 20 km. The simulated area includes about 13-52 ° N, 68-142 ° E. The number of vertical layers is 33, and the number of soil layers is 4 (0-10cm, 10-40cm, 40-100cm, 100-200cm). The simulation time was from 1991 to 2015, from April to August every year. Hourly and 6-hourly output data from the model are provided. The purpose of this data is to evaluate the simulation ability of WRF in plateau area and to explore the influence of initial land surface and snow cover on the simulation and prediction capability of regional model, which can provide data for evaluation and comparison between regional models.
YANG Fan LUO Zhicai
The EPMA data set of single mineral of magmatic rocks in the Qinghai Tibet Plateau is mainly based on the main data of single mineral in some areas of the Hoh Xil Lhasa plate, and the single mineral test points are more than 1000. The samples were distributed in Hoh Xil lake, Baohu Lake in South Qiangtang and Narusongduo area in Gangdise. Cameca sxlivefe electron microprobe was used for single mineral electron probe. The data comes from published articles or in the acceptance stage. The data were published in SCI or Ni journals, including American mineralogist and Journal of petroleum. The main testing units are Guangzhou Institute of geochemistry, Chinese Academy of Sciences and Institute of mineral resources, Chinese Academy of Geological Sciences. The data set can be used to study the petrogenesis of magmatic rocks in different areas of the Qinghai Tibet Plateau.
TANG Gongjian QI Yue WANG Jun ZHOU Jinsheng
These datasets fill the data gap between GRACE and GRACE-FO, they contain CSR RL06 Mascon and JPL RL06 Mascon. They take China as the study area, and the dataset includes "Decimal_time”, "lat”, "lon”, "time”, "time_bounds”, "TWSA_REC" and "Uncertainty" 7 parameters in total. Among them, "Decimal_time” corresponds to decimal time. There are 191 months from April 2002 to December 2019 (163 months for GRACE data, 17 months for GRACE-FO data, and 11 months for the gap between GRACE and GRACE-FO. We have not filled the missing data of individual months between GRACE or GRACE-FO data). "lat" corresponds to the latitude range of the data; "lon" corresponds to the longitude range of the data; "time" corresponds to the cumulative day of the data from January 1, 2002. And "time_bounds" corresponding to the cumulative day at the start date and end date of each month. “TWSA_REC" represents the monthly terrestrial water storage anomalies from April 2002 to December 2019 in China; "Uncertainty" is the uncertainty between the data and CSR RL06 Mascon products. We use GRACE satellite data from CSR GRACE/GRACE-FO RL06 Mascon solutions (version 02), China Gauge-based Daily Precipitation Analysis (CGDPA, version 1.0) data, and CN05.1 temperature dataset. The precipitation reconstruction model was established, and the seasonal and trend terms of CSR RL06 Mascon products were considered to obtain the dataset of terrestrial water storage anomalies in China. The data quality is good as a whole, and the uncertainty of most regions in China is within 5cm. This dataset complements the nearly one-year data gap between GRACE and GRACE-FO satellites, and provides a full time series for long-term land water storage change analysis in China. As the CSR RL06 Mascon product, the average value between 2004.0000 and 2009.999 is deducted from this dataset. Therefore, the 164-174 months (i.e., July 2017 to May 2018) of this dataset can be directly extracted as the estimation of terrestrial water storage anomalies during the gap period. The reconstruction method for the gap of JPL RL06 Mascon is consistent with that of CSR RL06 Mascon.
ZHONG Yulong FENG Wei ZHONG Min MING Zutao
Lithofacies analysis is an important research method to explore the source region, background, and nature of sedimentary basins. Through the systematic investigation of several late Cretaceous strata in Nepal, situated on the south flank of the Himalayas, the Tulsipur and Butwal sections conducted detailed lithology and sedimentary facies analysis. Continuous strata include the Taltang Fm. , Amile Fm. , Bhainskati Fm. and Dumri Fm. from bottom to top. The lithology contains terrigenous clastic rocks such as conglomerate, sandstone, siltstone and mudstone, chemical rocks such as limestone and siliceous rock, as well as special lithology such as coal seam, carbonaceous layer and oxidation crust. Both sections have various colors and sedimentary structures, which are good materials for the analysis of lithofacies evolution. According to the characteristics of lithofacies and sedimentary assemblage revealed that the Nepal sedimentary environment evolution during the late Cretaceous, which experienced the marine, fluvial, lacustrine, and delta evolution process.
MENG Qingquan
This data set mainly includes the whole rock SR Nd isotopic data of 83 magmatic rocks from the Hoh Xil- basin to Lhasa block in the Qinghai Tibet Plateau. The samples are mainly distributed in Hoh Xil- lake, Guoganjianian in the South Qiangtang, Dugur, Nasongduo and Saga counties in the Gangdise. Rock samples include olivine leucite, quartz monzonite, diorite and granite. The data mainly come from published articles or articles in the acceptance stage. MC-ICP-MS was used to measure SR Nd isotopes in Guangzhou Institute of geochemistry, Chinese Academy of Sciences and other key laboratories. The published articles of the data set have been included in high-level SCI or Ni journals, and the data results are true and reliable. In the future, it can be used to study the lithospheric evolution and magmatic genesis of the Qinghai Tibet Plateau.
TANG Gongjian DAN Wei QI Yue WANG Jun ZHOU Jinsheng
The Tibetan Plateau Glacial Data -TPG1976 is a glacial coverage data on the Tibetan Plateau in the 1970s. It was generated by manual interpretation from Landsat MSS multispectral image data. The temporal coverage was mainly from 1972 to 1979 by 60 m spatial resolution. It involved 205 scenes of Landsat MSS/TM. There were 189 scenes(92% coverage on TP)in 1972-79,including 116 scenes in 1976/77 (61% of all the collected satellite data).As high quality of MSS data is not accessible due to cloud and snow effects in the South-east Tibetan Plateau, earlier Landsat TM data was collected for usage, including 14 scenes of 1980s(1981,1986-89,which covers 6.5% of TP) and 2 scenes in 1994(by 1.5% coverage on TP).Among all satellite data,77% was collected in winter with the minimum effects of cloud and seasonal snow. The most frequent year in this period was defined as the reference year for the mosaic image: i.e. 1976. Glacier outlines were digitized on-screen manually from the 1976 image mosaic, relying on false-colour image composites (MSS: red, green and blue (RGB) represented by bands 321; TM: RGB by bands 543), which allowed us to distinguish ice/snow from cloud. Debris-free ice was distinguished from the debris and debris-covered ice by its higher reflectance. Debris-covered ice was not delineated in this data. The delineated glacier outlines were compared with band-ratio results, and validated by overlapping them onto Google Earth imagery, SRTM DEM, topographic maps and corresponding satellite images. For areas with mountain shadows and snow cover, they were verified by different methods using data from different seasons. For glaciers in deep shadow, Google EarthTM imagery from different dates was used as the reference for manual delineation. Steep slopes or headwalls were also excluded in the TPG1976. Areas that appeared in any of these sources to have the characteristics of exposed ground/basement/bed rock were manually delineated as non-glacier, and were also cross-checked with CGI-1 and CGI-2. Steep hanging glaciers were included in TPG1976 if they were identifiable on images in all three epochs (i.e. TPG1976, TPG2001, and TPG2013). The accuracy of manual digitization was controlled within one half-pixel. All glacier areas were calculated on the WGS84 spheroid in an Albers equal-area map projection centred at (95°E, 30°N) with standard parallels at 15°N and 65°N. Our results showed that the relative deviation of manual interpretation was less than 6.4% due to the 60 m spatial resolution images.
YE Qinghua WU Yuwei
The Tibetan Plateau Glacier Data –TPG2017 is a glacial coverage data on the Tibetan Plateau from selected 210 scenes of Landsat 8 Operational Land Imager (OLI) images with 30-m spatial resolution from 2013 to 2018, among of which 90% was in 2017 and 85% in winter. Therefore, 2017 was defined as the reference year for the mosaic image. Glacier outlines were digitized on-screen manually from the 2017 image mosaic, relying on false-colour image composites (RGB by bands 654), which allowed us to distinguish ice/snow from cloud. Debris-free ice was distinguished from the debris and debris-covered ice by its higher reflectance. Debris-covered ice was not delineated in this data. The delineated glacier outlines were compared with band-ratio (e.g. TM3/TM5) results, and validated by overlapping them onto Google Earth imagery, SRTM DEM, topographic maps and corresponding satellite images. For areas with mountain shadows and snow cover, they were verified by different methods using data from different seasons. For glaciers in deep shadow, Google EarthTM imagery from different dates was used as the reference for manual delineation. Steep slopes or headwalls were also excluded in the TPG2017. Areas that appeared in any of these sources to have the characteristics of exposed ground/basement/bed rock were manually delineated as non-glacier, and were also cross-checked with CGI-1 and CGI-2. Steep hanging glaciers were included in TPG2017 if they were identifiable on images in all other three epochs (i.e. TPG1976, TPG2001, and TPG2013). The accuracy of manual digitization was controlled within one half-pixel. All glacier areas were calculated on the WGS84 spheroid in an Albers equal-area map projection centred at (95°E, 30°N) with standard parallels at 15°N and 65°N. Our results showed that the relative deviation of manual interpretation was less than 3.9%.
YE Qinghua
The Tibetan Plateau Glacier Data –TPG2013 is a glacial coverage data on the Tibetan Plateau around 2013. 128 Landsat 8 Operational Land Imager (OLI) images were selected with 30-m spatial resolution, for comparability with previous and current glacier inventories. Besides, about 20 images acquired in 2014 were used to complete the full coverage of the TP. The most frequent year in this period was defined as the reference year for the mosaic image: i.e. 2013. Glacier outlines were digitized on-screen manually from the 2013 image mosaic, relying on false-colour image composites (RGB by bands 654), which allowed us to distinguish ice/snow from cloud. Debris-free ice was distinguished from the debris and debris-covered ice by its higher reflectance. Debris-covered ice was not delineated in this data. [To minimize the effects of snow or cloud cover on glacierized areas, high-resolution (30 m spatial resolution and 4-day repetition cycle) images were also used for reference in glacier delineation from the Chinese satellites HJ-1A and HJ-1B, which were launched on Sep.6th 2008. Both carried as payload two 4-band CCD cameras with swath width 700 km (360 km per camera). All HJ-1A/1B data in 2012, 2013 and 2014 (65 scenes, Fig.S1, Table S1) were from China Centre for Resources Satellite Data and Application (CRESDA; http://www.cresda.com/n16/n92006/n92066/n98627/index.html). Each scene was orthorectified with respect to the 30m-resolution digital elevation model (DEM) of the Shuttle Radar Topography Mission (SRTM) and Landsat images.] The delineated glacier outlines were compared with band-ratio (e.g. TM3/TM5) results, and validated by overlapping them onto Google Earth imagery, SRTM DEM, topographic maps and corresponding satellite images. Topographic maps from the 1970s and all available satellite images (including Google EarthTM imagery and HJ-1A/1B satellite data) were used as base reference data. For areas with mountain shadows and snow cover, they were verified by different methods using data from different seasons. For glaciers in deep shadow, Google EarthTM imagery from different dates was used as the reference for manual delineation. Steep slopes or headwalls were also excluded in the TPG2013. Areas that appeared in any of these sources to have the characteristics of exposed ground/basement/bed rock were manually delineated as non-glacier, and were also cross-checked with CGI-1 and CGI-2. Steep hanging glaciers were included in TPG2013 if they were identifiable on images in all three epochs (i.e. TPG1976, TPG2001, and TPG2013). The accuracy of manual digitization was controlled within one half-pixel. All glacier areas were calculated on the WGS84 spheroid in an Albers equal-area map projection centred at (95°E, 30°N) with standard parallels at 15°N and 65°N. Our results showed that the relative deviation of manual interpretation was less than 3.9%.
YE Qinghua
The Tibetan Plateau Glacial Data –TPG2001 is a glacial coverage data on the Tibetan Plateau in around 2000 from 150 scenes of Landsat7 TM/ETM+ images by 30 m spatial resolution. The selected Landsat7 TM/ETM+ images were within the period between 1999 and 2002, including 61 scenes (41%) in 2001 and 47 scenes (31%) in 2000. Among all the images, 71% was taken in winter. The most frequent year in this period was defined as the reference year for the mosaic image: i.e. 2001. Glacier outlines were digitized on-screen manually from the 2001 image mosaic, relying on false-colour image composites (RGB by bands 543), which allowed us to distinguish ice/snow from cloud. Debris-free ice was distinguished from the debris and debris-covered ice by its higher reflectance. Debris-covered ice was not delineated in this data. The delineated glacier outlines were compared with band-ratio (e.g. TM3/TM5) results, and validated by overlapping them onto Google Earth imagery, SRTM DEM, topographic maps and corresponding satellite images. Topographic maps from the 1970s and all available satellite images (including Google EarthTM imagery) were used as base reference data. For areas with mountain shadows and snow cover, they were verified by different methods using data from different seasons. For glaciers in deep shadow, Google EarthTM imagery from different dates was used as the reference for manual delineation. Steep slopes or headwalls were also excluded in the TPG2001. Areas that appeared in any of these sources to have the characteristics of exposed ground/basement/bed rock were manually delineated as non-glacier, and were also cross-checked with CGI-1 and CGI-2. Steep hanging glaciers were included in TPG2001 if they were identifiable on images in all three epochs (i.e. TPG1976, TPG2001, and TPG2013). The accuracy of manual digitization was controlled within one half-pixel. All glacier areas were calculated on the WGS84 spheroid in an Albers equal-area map projection centred at (95°E, 30°N) with standard parallels at 15°N and 65°N. Our results showed that the relative deviation of manual interpretation was less than 3.8%.
YE Qinghua Yuwei Wu
Soil moisture is one of the core variables in the water cycle. Although its variation is very small, for a precipitation process, soil moisture directly determines the transformation of precipitation into evaporation, runoff and groundwater, which is very important to finely simulate spatial-temporal dynamics of various variables in hydrological process and to accurately estimate water inflow in the upper reaches of Heihe River. This dataset includes soil moisture and temperature data observed by 40 nodes from July 2013 to December 2017. Each node in Babao River Basin has soil moisture observation at depth of 4cm and 20cm; some nodes also include observations at depth of 10 cm. The data observation frequency is 1 hour. The dataset can provide ground -based observations for hydrological simulation, data assimilation and remote sensing verification.
JIN Rui KANG Jian
The long-time series data set of extreme precipitation index in the arid region of Central Asia contains 10 extreme precipitation index long-time series data of 49 stations. Based on the daily precipitation data of the global daily climate historical data network (ghcn-d), the data quality control and outlier elimination were used to select the stations that meet the extreme precipitation index calculation. Ten extreme precipitation indexes (prcptot, SDII, rx1day, rx5day, r95ptot, r99ptot, R10, R20) defined by the joint expert group on climate change detection and index (etccdi) were calculated 、CWD、CDD)。 Among them, there are 15 time series from 1925 to 2005. This data set can be used to detect and analyze the frequency and trend of extreme precipitation events in the arid region of Central Asia under global climate change, and can also be used as basic data to explore the impact of extreme precipitation events on agricultural production and life and property losses.
YAO Junqiang CHEN Jing LI Jiangang
In 1970, land use was visually interpreted from MSS images, with an overall interpretation accuracy of more than 90%. Land classification was carried out in accordance with the land use classification system of the Chinese Academy of Sciences. For detailed classification rules, please read the data description document. The 2005 and 2015 data sets were collected from the European Space Agency (ESA) Data acquisition of global land cover types includes five Central Asian countries (Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan) and Xinjiang, China. There are 22 land use types in the data set. The IPCC land use classification system is adopted. Please refer to the documentation for specific classification details.
ZHANG Chi Geping Luo
The data content mainly includes the main and micro data of the whole rock of some magmatic rocks in the Hoh Xil Lhasa plate of the Qinghai Tibet Plateau. The samples were mainly distributed in Hoh Xil lake, South Qiangtang guoganjianian, Dugur, and Gangdise Nasongduo and Saga counties. There are more than 300 major and trace elements in the samples, including olivine leucite, quartz monzonite, diorite and granite, which are of great significance to the study of the lithospheric evolution of the Qinghai Tibet Plateau. Data mainly come from published articles or being accepted. XRF spectroscopy was used to determine the major elements and ICP-MS was used to determine the trace elements. The data quality is highly reliable, and the testing units include the State Key Laboratory of Guangzhou Institute of geochemistry, Chinese Academy of Sciences, etc. The data are published in high-level journals, including geology, BSA bulletin and Journal of petroleum.
TANG Gongjian WANG Jun QI Yue ZHOU Jinsheng DAN Wei
This data set mainly includes the non-traditional B-Mo isotopic data of Himalayan Leucogranites, which is mainly used to study the mechanism of B-Mo isotopic fractionation during the melting process, and is of great significance to the genetic study of Himalayan Leucogranites. The rocks are mainly from the granite in the Cuonadong area. Among them, there are 34 Mo samples and 48 B samples, including repeated samples. MC-ICP-MS was used for B-Mo isotopic analysis. ICP-AES and MC-ICP-MS were used for B and Mo contents in solution. The testing unit is Guangzhou Institute of geochemistry, Chinese Academy of Sciences. The data are from accepted articles published in the Journal of geochimica et cosmochimica Acta, and the data are true and reliable. It can be applied to the study of unconventional isotope fractionation and the genesis of magmatic rocks.
FAN Jingjing
This data includes the accessibility of 15 kinds of public facilities and services, such as roads and schools, in the communities of 1280 households at domestic and abroad, as well as the farmers' satisfaction with these public facilities and public services by comparing that with 3 years ago and current status with neighboring village. This data is used to support the analysis of the material capital part of sustainable livelihood. The data was collected by the research group through field survey in 2019. Before collecting the data, the research group and invited experts conducted a pretest and improved the survey questionnaire; Before the formal investigation, the members participating in the data collection were strictly trained; In the formal survey, each questionnaire is checked three times before it is filed. This data is of great value for understanding the physical capital accessibility and satisfaction of rural households in environment-economic fragile areas, and is an important supplement to national and macro data.
XIE Yaowen
The single mineral dating data set of magmatic rocks in the Qinghai Tibet Plateau is mainly zircon dating in some areas of the Hoh Xil Lhasa plate, with 34 zircon dating samples. The samples are mainly from baohu, guoganjianianshan and Dugur areas of South Qiangtang, Saga county and narusongduo areas of Lhasa plate. The rocks are mainly quartz monzonite, granite and diorite. The zircon dating methods include Sims and LA-ICPMS. The data comes from published articles or in the acceptance stage. The data were published in SCI or Ni journals, including geology, BSA bulletin and Journal of petroleum, and the data results were true and reliable. The main testing unit is Guangzhou Institute of geochemistry, Chinese Academy of Sciences. The data set can be used to study the age of magmatic rocks in different areas of the Qinghai Tibet Plateau.
TANG Gongjian DAN Wei ZHOU Jinsheng QI Yue WANG Jun
Zircon HF-O data sets of magmatic rocks in the Qinghai Tibet Plateau are mainly based on zircon HF-O isotopic data of local areas from the South Qiangtang to Lhasa plate. Zircon HF-O test points are mainly concentrated in guoganjianian mountain, baohu, Duguer of South Qiangtang and saga County of Lhasa plate. The rocks are mainly mafic dyke swarms, gneissic granite and diorite. Zircon HF-O was measured by MC-ICP-MS and Sims, respectively. The data comes from published articles or in the acceptance stage. The data were published in SCI or Ni journals, including geology, BSA bulletin and Journal of petroleum, and the data results were true and reliable. The main testing unit is Guangzhou Institute of geochemistry, Chinese Academy of Sciences. The data set can be used to study the petrogenesis and lithospheric evolution of magmatic rocks in different areas of the Qinghai Tibet Plateau.
TANG Gongjian DAN Wei WANG Jun QI Yue
The data of greenhouse land is based on Google Earth image interpretation in Lhasa city, 2018, with a spatial resolution of 0.52 meters. Most of the greenhouses in Lhasa are regular rectangles with high reflectivity, which is easy to identify. In the process of interpretation, the open fields with an area of more than 0.10 hectares and roads with a width of more than 7 meters in the greenhouse area of protected agriculture, as well as the greenhouse covered with black textile were removed, while the small empty fields and ridges between the farmland of protected agriculture were not removed. The accuracy of interpretation is 98%. The data well reflects the spatial pattern characteristics of greenhouse land in Lhasa city.
WANG Zhaofeng GONG Dianqing
The data are collected from the automatic weather station (AWS, Campbell company) in the moraine area of garongla glacier by the comprehensive observation and research station of alpine environment in Southeast Tibet, Chinese Academy of Sciences. The geographic coordinates are 29.765 ° n, 95.712 ° E and 3950 m above sea level. The data include daily arithmetic mean data of air temperature (℃), relative humidity (%), wind speed (M / s), net radiation (w / m2) and air pressure (kPa). In the original data, an average value is recorded every 30 minutes before October 2018, and then an average value is recorded every 10 minutes. The temperature and humidity are measured by hmp155a temperature and humidity probe. The net radiation probe is nr01, the atmospheric pressure sensor probe is ptb210, and the wind speed sensor is 05103. These probes are 2 m above the ground. Due to the thick snow cover and low temperature on the ice surface in winter and spring, some parameter data periods are missing, which can be used by scientific researchers studying climate, glacier and hydrology.
LUO Lun
According to the distribution of cultivated land in 18 districts and counties in the "One River and Two Tributaries" region of Tibet Autonomous Region, a 5km × 5km grid was adopted, covering all cultivated land and greenhouse land. A total of 1092 5km × 5km grids were set up, and each grid contains a number. Data processing method: the fishnet tool in ArcGIS 10.3 is used to generate the grid covering the administrative boundaries of 18 districts and counties in the "one river, two rivers" region of Tibet Autonomous Region, and then the intersect tool is used to generate the grid covering cultivated land. The data can be used to collect soil samples of cultivated land in "One River and Two Tributaries" area of Tibet Autonomous Region.
WANG Zhaofeng GONG Dianqing