Pan-third-polar environmental change and green silk road construction

Brief Introduction: Pan-third-polar environmental change and green silk road construction

Number of Datasets: 1099

  • Rare animals survey dataset for the Three-River Headwater Region (2016-2017)

    Rare animals survey dataset for the Three-River Headwater Region (2016-2017)

    The data set contains the rare animal survey data for the Sanjiangyuan area from 2016 to 2017, including the latitude and longitude of the survey site, the length of the sample line, animal discovery time, animal names, quantity, location of the occurrence, type of habitat, affiliated families, etc.

    2021-04-18 1862 76

  • Monthly standard weather station dataset in Sanjiangyuan (1957-2015)

    Monthly standard weather station dataset in Sanjiangyuan (1957-2015)

    Monthly meteorological data of Sanjiangyuan includes 32 national standard meteorological stations. There are 26 variables: average local pressure, extreme maximum local pressure, date of extreme maximum local pressure, extreme minimum local pressure, date of extreme minimum local pressure, average temperature, extreme maximum temperature, date of extreme maximum temperature, extreme minimum temperature and date of extreme minimum temperature, average temperature anomaly, average maximum temperature, average minimum temperature, sunshine hours, percentage of sunshine, average relative humidity, minimum relative humidity, date of occurrence of minimum relative humidity, precipitation, days of daily precipitation >=0.1mm, maximum daily precipitation, date of maximum daily precipitation, percentage of precipitation anomaly, average wind speed, maximum wind speed, date of maximum wind speed, maximum wind speed, wind direction of maximum wind speed, wind direction of maximum wind speed and occurrence date of maximum wind speed. The data format is txt, named by the site ID, and each file has 26 columns. The names and units of each column are explained in the SURF_CLI_CHN_MUL_MON_readme.txt file. site_id lat lon elv name_cn 52754 37.33 100.13 8301.50 Gangcha 52833 36.92 98.48 7950.00 Wulan 52836 36.30 98.10 3191.10 Dulan 52856 36.27 100.62 2835.00 Qiapuqia 52866 36.72 101.75 2295.20 Xining 52868 36.03 101.43 2237.10 Guizhou 52908 35.22 93.08 4612.20 Wudaoliang 52943 35.58 99.98 3323.20 Xinghai 52955 35.58 100.75 8120.00 Guinan 52974 35.52 102.02 2491.40 Tongren 56004 34.22 92.43 4533.10 Togton He 56018 32.90 95.30 4066.40 Zaduo 56021 34.13 95.78 4175.00 Qumalai 56029 33.02 97.02 3681.20 Yushu 56033 34.92 98.22 4272.30 Maduo 56034 33.80 97.13 4415.40 Qingshui River 56038 32.98 98.10 9200.00 Shiqu 56043 34.47 100.25 3719.00 Guoluo 56046 33.75 99.65 3967.50 Dari 56065 34.73 101.60 8500.00 Henan 56067 33.43 101.48 3628.50 Jiuzhi 56074 34.00 102.08 3471.40 Maqu 56080 35.00 102.90 2910.00 Hezuo 56106 31.88 93.78 4022.80 Suo County 56116 31.42 95.60 3873.10 Dingqing 56125 32.20 96.48 3643.70 Nangqian 56128 31.22 96.60 3810.00 Leiwuqi 56137 31.15 97.17 3306.00 Changdu 56151 32.93 100.75 8530.00 Banma 56152 32.28 100.33 8893.90 Seda

    2021-04-18 5102 136

  • Vegetation quadrat survey dataset in Maduo County (2016)

    Vegetation quadrat survey dataset in Maduo County (2016)

    The data set includes the sample survey data of alpine grassland and alpine meadow in Maduo County in September 2016. The sample size is 50cm × 50cm. The investigation contents include coverage, species name, vegetation height, biomass (dry weight and fresh weight), longitude and latitude coordinates, slope, aspect, slope position, soil type, vegetation type, surface characteristics (litter, gravel, wind erosion, water erosion, saline alkali spot, etc.), utilization mode, utilization intensity, etc.

    2021-04-18 2357 55

  • Data set of modern glacier distribution in Hoh Xil area, Qinghai Province (1989-August 1990)

    Data set of modern glacier distribution in Hoh Xil area, Qinghai Province (1989-August 1990)

    The data set is a record of glacier distribution in Hoh Xil region, including three tables: the distribution of modern glaciers in various mountain areas in Hoh Xil region, the distribution of modern glaciers in various river basins in Hoh Xil region, and the distribution of modern glaciers in different mountain height segments in Hoh Xil region. Hoh Xil, located in the hinterland of the Qinghai Tibet Plateau, has an average altitude of more than 5000m and a very cold climate. According to the catalogue of China's glaciers and the author's re statistics on the 1 / 100000 topographic map, 437 modern glaciers are developed in the whole region, covering an area of 1552.39 square kilometers, with ice reserves of 162.8349 cubic kilometers, becoming an important source of water supply for many rivers and lakes in the region. Through this data set, we can know more about the distribution of glaciers in this area.

    2021-04-15 484 7

  • Multi-source integrated chinese land cover map (2000)

    Multi-source integrated chinese land cover map (2000)

    This data set is based on the evaluation of existing land cover data and the evidence theory,including a 1:100,000 land use map for the year 20 2000、a 1:1,000,000 vegetation map、a 1:1,000,000 swamp-wetland map, a glacier map and a Moderate-Resolution Imaging Spectroradiometer land cover map for China in 2001 (MODIS2001) were merged,Finally, the decision is made based on the principle of maximum trust, and a new 1KM land cover data of China in 2000 with IGBP classification system is produced. The new land cover data not only maintain the overall accuracy of China's land use data, but also supplement the information of vegetation types and vegetation seasons in China's vegetation map, update China's wetland map, add the latest information of China's glacier map, and make the classification system more general.

    2021-04-15 4044 113

  • Precipitation data on Tibetan Plateau (2000-2015)

    Precipitation data on Tibetan Plateau (2000-2015)

    The Qinghai Tibet Plateau belongs to the plateau mountain climate. The precipitation, its seasonal distribution and the change of precipitation forms have been one of the hot spots in the global climate change research. The data includes precipitation data of Qinghai Tibet Plateau, with spatial resolution of 1km * 1km, temporal resolution of month and year, and time coverage of 2000, 2005, 2010 and 2015. The data are obtained by Kring interpolation of meteorological data of National Meteorological Science Information Center. The data can be used to analyze the temporal and spatial distribution of precipitation over the Qinghai Tibet Plateau. In addition, the data can also be used to analyze the temporal and spatial variation of precipitation over the Qinghai Tibet Plateau, which is of great significance to the study of the ecological environment of the Qinghai Tibet Plateau.

    2021-04-09 972 64

  • Map of the frozen soil in the Tibetan Plateau (2003)

    Map of the frozen soil in the Tibetan Plateau (2003)

    The Tibetan Plateau is known as “The World’s Third Pole” and “The Water Tower of Asia”. A relatively accurate map of the frozen soil in the Tibetan Plateau is therefore significant for local cold region engineering and environmental construction. Thus, to meet the engineering and environmental needs, a decision tree was established based on multi-source remote sensing data (elevation, MODIS surface temperature, vegetation index and soil moisture) to divide the permafrost and seasonally frozen soil of the Tibetan Plateau. The data are in grid format, DN=1 stands for permafrost, and DN=2 stands for seasonally frozen soil. The elevation data are from the 1 km x 1 km China DEM (digital elevation model) data set (http://westdc.westgis.ac.cn); the surface temperature is the yearly average data based on daily data estimated by Bin Ouyang and others using the Sin-Linear method. The estimation of the daily average surface temperature was based on the application of the Sin-Linear method to MODIS surface products, and to reduce the time difference with existing frozen soil maps, the surface temperature of the study area in 2003 was used as the information source for the classification of frozen soil. Vegetation information was extracted from the 16-day synthetic product data of Aqua and Terra (MYD13A1 and MOD13A1) in 2003. Soil moisture values were obtained from relatively high-quality ascending pass data collected by AMSR-E in May 2003. Therefore, based on the above data, the classification threshold of the decision tree was obtained using the Map of Frozen Soil in the Tibetan Plateau (1:3000000) and Map of the Glaciers, Frozen Soil and Deserts in China (1:4000000) as the a priori information. Based on the prosed method, the frozen soil types on the Tibetan Plateau were classified. The classification results were then verified and compared with the surveyed maps of frozen soil in the West Kunlun Mountains, revised maps, maps of hot springs and other existing frozen soil maps related to the Tibetan Plateau. Based on the Tibetan Plateau frozen soil map generated from the multi-source remote sensing information, the permafrost area accounts for 42.5% (111.3 × 104 km²), and the seasonally frozen soil area accounts for 53.8% (140.9 × 104 km²) of the total area of the Tibetan Plateau. This result is relatively consistent with the prior map (the 1:3000000 Map of Frozen Soil in the Tibetan Plateau). In addition, the overall accuracy and Kappa coefficient of the different frozen soil maps show that the frozen soil maps compiled or simulated by different methods are basically consistent in terms of the spatial distribution pattern, and the inconsistencies are mainly in the boundary areas between permafrost areas and seasonally frozen soil areas.

    2021-04-09 3125 73

  • Data of soil organic matter in Qinghai-Tibet Plateau (1979-1985)

    Data of soil organic matter in Qinghai-Tibet Plateau (1979-1985)

    The data include soil organic matter data of Tibetan Plateau , with a spatial resolution of 1km*1km and a time coverage of 1979-1985.The data source is the soil carbon content generated from the second soil census data.Soil organic matter mainly comes from plants, animals and microbial residues, among which higher plants are the main sources.The organisms that first appeared in the parent material of primitive soils were microorganisms.With the evolution of organisms and the development of soil forming process, animal and plant residues and their secretions become the basic sources of soil organic matter.The data is of great significance for analyzing the ecological environment of Tibetan Plateau

    2021-04-09 1004 47

  • Daily 0.01°×0.01° Land Surface Soil Moisture Dataset of the Qinghai-Tibet Plateau (SMHiRes, V1)

    Daily 0.01°×0.01° Land Surface Soil Moisture Dataset of the Qinghai-Tibet Plateau (SMHiRes, V1)

    This dataset contains daily 0.01°×0.01° land surface soil moisture products in the Qinghai-Tibet Plateau in 2005, 2010, 2015, 2017, and 2018. The dataset was produced by utilizing the multivariate statistical regression model to downscale the “SMAP Time-Expanded 0.25°×0.25° Land Surface Soil Moisture Dataset in the Qinghai-Tibet Plateau (SMsmapTE, V1)”. The auxiliary datasets participating in the multivariate statistical regression include GLASS Albedo/LAI/FVC, 1km all-weather surface temperature data in western China by Ji Zhou, and Lat/Lon information.

    2021-04-09 2271 87

  • Land Surface Soil Moisture Dataset of SMAP Time-Expanded Daily 0.25°×0.25° over Qinghai-Tibet Plateau Area (SMsmapTE, V1)

    Land Surface Soil Moisture Dataset of SMAP Time-Expanded Daily 0.25°×0.25° over Qinghai-Tibet Plateau Area (SMsmapTE, V1)

    This dataset contains land surface soil moisture products with SMAP time-expanded daily 0.25°×0.25°in Qinghai-Tibet Plateau Area. The dataset was produced based on the Random Forest method by utilizing passive microwave brightness temperature along with some auxiliary datasets. The temporal resolution of the product in 1980,1985,1990,1995 and 2000 is monthly, by using SMMR, SSM/I, and SSMIS brightness temperature from 19 GHz V/H and 37 GHz V channels. The temporal resolution of the product between June 20, 2002 and Dec 30, 2018 is daily, by utilizing AMSR-E and AMSR2 brightness temperature from 6.925 GHz V/H, 10.65 GHz V/H, and 36.5 GHz V channels. The auxiliary datasets participating in the Random Forest training include the IGBP land cover type, GTOPO30 DEM, and Lat/Lon information.

    2021-04-09 2057 73

  • Dataset of soil texture on the Qinghai-Tibet Plateau (2010)

    Dataset of soil texture on the Qinghai-Tibet Plateau (2010)

    Soil data are extremely important at both global and local scales, and in the absence of reliable soil data, land degradation assessments, environmental impact studies and sustainable land management interventions are severely hampered。By Soil information data in the urgent need of the World, especially under the background of the convention on climate change, international institute for applied systems analysis (IIASA) and the UN food and agriculture organization (FAO) and the Kyoto protocol on Soil carbon measurement and the United Nations food and agriculture organization (FAO)/international global agriculture ecological assessment (GAEZ v3.0) jointly established under the sponsorship of a new generation of World Soil Database (Harmonized World Soil Database version 1.2) (HWSD V1.2). The 2010 data set of soil texture on the qinghai-tibet plateau was culled from the world soil database.Data format :grid format, projected as WGS84.The main soil classification system used is fao-90.Unique verification identifier of core soil institution unit: Mu_global-hwsd database soil mapping unit identifier that connects GIS layers. MU_SOURCE1 and MU_SOURCE2- source database mapping unit identifiers; SEQ- soil unit sequence in the composition of soil mapping unit; Soil classification system USES fao-7 classification system or fao-90 classification system (SU_SYM74 resp.su_sym90) or fao-85 (SU_SYM85). The main fields of the soil property sheet include: ID(database ID) MU_GLOBAL(soil unit identifier) (global) SU_SYMBOL Soil mapping unit SU_SYM74(FAO74classify ); SU_SYM85(FAO85classify); SU_SYM90(FAO90The soil name in a soil classification system); SU_CODE Soil mapping unit code SU_CODE74 Soil unit name SU_CODE85 Soil unit name SU_CODE90 Soil unit name DRAINAGE(19.5); REF_DEPTH(Soil reference depth); AWC_CLASS(19.5); AWC_CLASS(Soil available water content); PHASE1: Real (The soil phase); PHASE2: String (The soil phase); ROOTS: String (Depth classification of obstacles to the bottom of the soil); SWR: String (Characteristics of soil moisture content); ADD_PROP: Real (A specific soil type in a soil unit that is associated with agricultural use); T_TEXTURE(Topsoil texture); T_GRAVEL: Real (Percentage of aggregate volume on top);( unit:%vol.) T_SAND: Real (Top sand content); ( unit:% wt.) T_SILT: Real (surface silt content);(unit: % wt.) T_CLAY: Real (clay content on top);(unit: % wt.) T_USDA_TEX: Real (top-level USDA soil texture classification);(unit: name) T_REF_BULK: Real (top soil bulk density);(unit: kg/dm3.) T_OC: Real (top organic carbon content);(unit: % weight) T_PH_H2O: Real (top ph) (unit: -log(H+)) T_CEC_CLAY: Real (the cationic exchange capacity of the clay layer at the top);(unit: cmol/kg) T_CEC_SOIL: Real (cation exchange capacity of topsoil) (unit: cmol/kg) T_BS: Real (top basic saturation);(unit: %) T_TEB: Real (top exchange base);(unit: cmol/kg) T_CACO3: Real (top carbonate or lime content) (unit: % weight) T_CASO4: Real (top-level sulfate content);(unit: % weight) T_ESP: Real (top layer exchangeable sodium salt);(unit: %) T_ECE: Real (top-level conductivity).(unit: dS/m) S_GRAVEL: Real (percentage of bottom gravel volume);(unit: % vol.) S_SAND: Real (content of underlying sand);(unit: % wt.) S_SILT: Real (substratum silt content);(unit: % wt.) S_CLAY: Real (clay content in the bottom layer);(unit: % wt.) S_USDA_TEX: Real (USDA underlying soil texture classification);(unit: name) S_REF_BULK: Real (bulk density of underlying soil);(unit: kg/dm3.) S_OC: Real (bottom organic carbon content);(unit: % weight) S_PH_H2O: Real (base ph) (unit: -log(H+)) S_CEC_CLAY: Real (cation exchange capacity of the underlying cohesive soil);(unit: cmol/kg) S_CEC_SOIL: Real (cation exchange capacity of underlying soil) (unit: cmol/kg) S_BS: Real (underlying basic saturation);(unit: %) S_TEB: Real (underlying exchangeable base);(unit: cmol/kg) S_CACO3: Real (content of underlying carbonate or lime) (unit: % weight) S_CASO4: Real (substrate sulfate content);(unit: % weight) S_ESP: Real (underlying exchangeable sodium salt);(unit: %) S_ECE: Real (underlying conductivity).(unit: dS/m) This database is divided into two layers, in which the top layer (T) has a soil thickness of (0-30cm) and the bottom layer (S) has a soil thickness of (30-100cm).。 Refer to the instructions for other attribute values HWSD1.2_documentation.pdf,The Harmonized World Soil Database (HWSD V1.2) Viewer-Chinese description andHWSD.mdb。

    2021-04-09 3143 143

  • NPP dataset of remote sensing for ecological assets assessment in Qinghai-Tibet Plateau

    NPP dataset of remote sensing for ecological assets assessment in Qinghai-Tibet Plateau

    The basic data set of remote sensing for ecological assets assessment of the Qinghai-Tibet Plateau includes the annual Fraction Vegetation Coverage (FVC), Net Primary Productivity (NPP) and Leaf Area Index (LAI) of the Qinghai-Tibet Plateau since 2000, and other ecological parameters based on remote sensing inversion. The FVC data are mainly developed from MODIS NDVI data. NPP estimation method based on algorithm of CASA model.

    2021-04-09 1615 104

  • Glacier coverage data on the Tibetan Plateau in 2013 (TPG2013, Version1.0)

    Glacier coverage data on the Tibetan Plateau in 2013 (TPG2013, Version1.0)

    The Tibetan Plateau Glacier Data –TPG2013 is a glacial coverage data on the Tibetan Plateau around 2013. 128 Landsat 8 Operational Land Imager (OLI) images were selected with 30-m spatial resolution, for comparability with previous and current glacier inventories. Besides, about 20 images acquired in 2014 were used to complete the full coverage of the TP. The most frequent year in this period was defined as the reference year for the mosaic image: i.e. 2013. Glacier outlines were digitized on-screen manually from the 2013 image mosaic, relying on false-colour image composites (RGB by bands 654), which allowed us to distinguish ice/snow from cloud. Debris-free ice was distinguished from the debris and debris-covered ice by its higher reflectance. Debris-covered ice was not delineated in this data. [To minimize the effects of snow or cloud cover on glacierized areas, high-resolution (30 m spatial resolution and 4-day repetition cycle) images were also used for reference in glacier delineation from the Chinese satellites HJ-1A and HJ-1B, which were launched on Sep.6th 2008. Both carried as payload two 4-band CCD cameras with swath width 700 km (360 km per camera). All HJ-1A/1B data in 2012, 2013 and 2014 (65 scenes, Fig.S1, Table S1) were from China Centre for Resources Satellite Data and Application (CRESDA; http://www.cresda.com/n16/n92006/n92066/n98627/index.html). Each scene was orthorectified with respect to the 30m-resolution digital elevation model (DEM) of the Shuttle Radar Topography Mission (SRTM) and Landsat images.] The delineated glacier outlines were compared with band-ratio (e.g. TM3/TM5) results, and validated by overlapping them onto Google Earth imagery, SRTM DEM, topographic maps and corresponding satellite images. Topographic maps from the 1970s and all available satellite images (including Google EarthTM imagery and HJ-1A/1B satellite data) were used as base reference data. For areas with mountain shadows and snow cover, they were verified by different methods using data from different seasons. For glaciers in deep shadow, Google EarthTM imagery from different dates was used as the reference for manual delineation. Steep slopes or headwalls were also excluded in the TPG2013. Areas that appeared in any of these sources to have the characteristics of exposed ground/basement/bed rock were manually delineated as non-glacier, and were also cross-checked with CGI-1 and CGI-2. Steep hanging glaciers were included in TPG2013 if they were identifiable on images in all three epochs (i.e. TPG1976, TPG2001, and TPG2013). The accuracy of manual digitization was controlled within one half-pixel. All glacier areas were calculated on the WGS84 spheroid in an Albers equal-area map projection centred at (95°E, 30°N) with standard parallels at 15°N and 65°N. Our results showed that the relative deviation of manual interpretation was less than 3.9%.

    2021-04-09 3051 91

  • The 30-m land cover data of Tibetan Plateau (2010)

    The 30-m land cover data of Tibetan Plateau (2010)

    These data contain two data files: GLOBELAND30 TILES (raw data) and TIBET_ GLOBELAND30_MOSAIC (mosaic data). The raw data were downloaded from the Global Land Cover Data website (GlobalLand3) (http://www.globallandcover.com) and cover the Tibetan Plateau and surrounding areas. The raw data were stored in frames, and for the convenience of using the data, we use Erdas software to splice and mosaic the raw data. The Global Land Cover Data (GlobalLand30) is the result of the “Global Land Cover Remote Sensing Mapping and Key Technology Research”, which is a key project of the National 863 Program. Using the American Landsat images (TM5, ETM+) and Chinese Environmental Disaster Reduction Satellite images (HJ-1), the data were extracted by a comprehensive method based on pixel classification-object extraction-knowledge checks. The data include 10 primary land cover types—cultivated land, forest, grassland, shrub, wetland, water body, tundra, man-made cover, bare land, glacier and permanent snow—without extracting secondary types. In terms of accuracy assessment, nine types and more than 150,000 test samples were evaluated. The overall accuracy of the GlobeLand30-2010 data is 80.33%. The Kappa indicator is 0.75. The GlobeLand30 data use the WGS84 coordinate system, UTM projection, and 6-degree banding, and the reference ellipsoid is the WGS 84 ellipsoid. According to different latitudes, the data are organized into two types of framing. In the regions of 60° north and south latitudes, the framing is carried out according to a size of 5° (latitude) × 6° (longitude); in the regions of 60° to 80° north and south latitudes, the framing is carried out according to a size of 5° (latitude) × 12° (longitude). The framing is projected according to the central meridian of the odd 6° band. GLOBELAND30 TILES: The original, unprocessed raw data are retained. TIBET_ GLOBELAND30_MOSAIC: The Erdas software is used to mosaic the raw data. The parameter settings use the default value of the raw data to retain the original, and the accuracy is consistent with that of the downloading site.

    2021-04-09 2700 88

  • Photosynthetically active radiation absorption coefficient dataset in Qinghai Tibet Plateau (2000-2015)

    Photosynthetically active radiation absorption coefficient dataset in Qinghai Tibet Plateau (2000-2015)

    Photosynthetic effective radiation absorption coefficient photosynthetically active radiation component is an important biophysical parameter. It is an important land characteristic parameter of ecosystem function model, crop growth model, net primary productivity model, atmosphere model, biogeochemical model and ecological model, and is an ideal parameter for estimating vegetation biomass. The data set contains the data of photosynthetically active radiation absorption coefficient in Qinghai Tibet Plateau, with spatial resolution of 500m, temporal resolution of 8D, and time coverage of 2000, 2005, 2010 and 2015. The data source is MODIS Lai / FPAR product data mod15a2h (C6) on NASA website. The data are of great significance to the analysis of vegetation ecological environment in the Qinghai Tibet Plateau.

    2021-04-09 2454 6

  • Disaster statistical dataset of Qinghai Tibet Plateau (1950-2002)

    Disaster statistical dataset of Qinghai Tibet Plateau (1950-2002)

    This data set contains the statistical information of natural disasters in Qinghai Tibet Plateau in the past 50 years (1950-2002), including drought, snow disaster, frost disaster, hail, flood, wind disaster, lightning disaster, cold wave and strong cooling, low temperature and freezing damage, gale sandstorm, insect disaster, rodent damage and other meteorological disasters. Qinghai and Tibet are the main parts of the Qinghai Tibet Plateau. The Qinghai Tibet Plateau is one of the Centers for the formation and evolution of biological species in China. It is also a sensitive area and fragile zone for the international scientific and technological circles to study climate and ecological environment changes. Its complex terrain conditions, high altitude and severe climate conditions determine that the ecological environment is very fragile, It has become the most frequent area of natural disasters in China. The data were extracted from "China Meteorological Disaster Canon · Qinghai volume" and "China Meteorological Disaster Canon · Tibet Volume", which were manually input, summarized and proofread.

    2021-04-09 497 42

  • Grading map of agricultural suitability on the Tibet Plateau (2018)

    Grading map of agricultural suitability on the Tibet Plateau (2018)

    This study takes the land resources in the Qinghai-Tibet Plateau as the evaluation object, and clarifies the current situation in the region suitable for agriculture, forestry, animal husbandry production and the quantity, quality and distribution of the reserve land resources. Through field investigations, collect relevant data from the study area, and combine relevant literature and expert experience to determine the evaluation factors (altitude, slope, annual precipitation, accumulated temperature, sunshine hours, soil effective depth, texture, erosion, vegetation type, NDVI). The grading and standardization are carried out, and the weights of each evaluation factor are determined by principal component analysis. The weighted index and model are used to determine the total score of the evaluation unit. Finally, the ArcGis natural discontinuity classification method is used to obtain the Qingshang Plateau. And the grades of farmland, forestry and grassland suitability drawings of the Qinghai-Tibet Plateau with a resolution of 90m were given. Finally, the results are verified and analyzed.

    2021-04-09 1842 56

  • Dataset of soil  erosion intensity with 300m resoluton in Tibetan Plateau (1992, 2005, 2015)

    Dataset of soil erosion intensity with 300m resoluton in Tibetan Plateau (1992, 2005, 2015)

    1) The data content includes three stages of soil erosion intensity in Qinghai-Tibet Plateau in 1992, 2005 and 2015m the grid resolution is 300m.2) The data of soil erosion intensity are obtained by using the Chinese soil erosion prediction model (CSLE). The formula of soil erosion prediction model includes rainfall erosivity factor, soil erodibility factor, slope length factor, slope factor, vegetation cover and biological measure factor, engineering measure factor and tillage measure factor. Rainfall erodibility factors are calculated from the daily rainfall data by the US Climate Prdiction Center (CPC); soil erodibility factors, engineering measures factors and tillage measures factors are obtained from the first water conservancy census data; slope length factors and slope factors are obtained by resampling after calculating 30 m elevation data; vegetation coverage and biological measures factors are obtained by combining fractional vegetation cover with land use data and rainfall erodibility proportionometer. The fractional vegetation cover is calculated by MODIS vegetation index products through pixel dichotomy. 3) Compared with the data of soil erosion intensity in the same region in the same year, there is no significant difference and the data quality is good.4) the data of soil erosion intensity is of great significance for studying the present situation of soil erosion in Pan third polar 65 countries and better carrying out the development policy of the area along the way.

    2021-04-09 2203 93

  • Dataset of Soil  Erosion (water) Intensity with 300m resoluton in Tibetan Plateau (1992, 2005, 2015)

    Dataset of Soil Erosion (water) Intensity with 300m resoluton in Tibetan Plateau (1992, 2005, 2015)

    1)The data content includes three stages of soil erosion intensity in Qinghai-Tibet Plateau in 1992, 2005 and 2015, and the grid resolution is 300m. 2) China soil erosion prediction model (CSLE) was used to calculate the soil erosion amount of more than 4,000 investigation units on the Qinghai-Tibet Plateau. Soil erosion was interpolated according to land use on Qinghai-Tibet Plateau. According to the soil erosion classification standard, the soil erosion intensity map of Qinghai-Tibet Plateau was obtained. 3) By comparing the differences of three-stage soil erosion intensity data, it conforms to the actual change law and the data quality is good. 4) The data of soil erosion intensity are of great significance to the study of soil erosion in the Qinghai-Tibet Plateau and the sustainable development of local ecosystems. In the attribute table, "Value" represents the erosion intensity level, from 1 to 6, the value represents slight, mild, moderate, intense, extremely intense and severe. "BL" represents the percentage of echa erosion intensity in the total area.

    2021-04-09 3013 97

  • Glacier coverage data  on the Tibetan Plateau  in 1970s (TPG1976, Version 1.0)

    Glacier coverage data on the Tibetan Plateau in 1970s (TPG1976, Version 1.0)

    The Tibetan Plateau Glacial Data -TPG1976 is a glacial coverage data on the Tibetan Plateau in the 1970s. It was generated by manual interpretation from Landsat MSS multispectral image data. The temporal coverage was mainly from 1972 to 1979 by 60 m spatial resolution. It involved 205 scenes of Landsat MSS/TM. There were 189 scenes(92% coverage on TP)in 1972-79,including 116 scenes in 1976/77 (61% of all the collected satellite data).As high quality of MSS data is not accessible due to cloud and snow effects in the South-east Tibetan Plateau, earlier Landsat TM data was collected for usage, including 14 scenes of 1980s(1981,1986-89,which covers 6.5% of TP) and 2 scenes in 1994(by 1.5% coverage on TP).Among all satellite data,77% was collected in winter with the minimum effects of cloud and seasonal snow. The most frequent year in this period was defined as the reference year for the mosaic image: i.e. 1976. Glacier outlines were digitized on-screen manually from the 1976 image mosaic, relying on false-colour image composites (MSS: red, green and blue (RGB) represented by bands 321; TM: RGB by bands 543), which allowed us to distinguish ice/snow from cloud. Debris-free ice was distinguished from the debris and debris-covered ice by its higher reflectance. Debris-covered ice was not delineated in this data. The delineated glacier outlines were compared with band-ratio results, and validated by overlapping them onto Google Earth imagery, SRTM DEM, topographic maps and corresponding satellite images. For areas with mountain shadows and snow cover, they were verified by different methods using data from different seasons. For glaciers in deep shadow, Google EarthTM imagery from different dates was used as the reference for manual delineation. Steep slopes or headwalls were also excluded in the TPG1976. Areas that appeared in any of these sources to have the characteristics of exposed ground/basement/bed rock were manually delineated as non-glacier, and were also cross-checked with CGI-1 and CGI-2. Steep hanging glaciers were included in TPG1976 if they were identifiable on images in all three epochs (i.e. TPG1976, TPG2001, and TPG2013). The accuracy of manual digitization was controlled within one half-pixel. All glacier areas were calculated on the WGS84 spheroid in an Albers equal-area map projection centred at (95°E, 30°N) with standard parallels at 15°N and 65°N. Our results showed that the relative deviation of manual interpretation was less than 6.4% due to the 60 m spatial resolution images.

    2021-04-09 3510 74