Westdc Logo

Effects of climate change on annual streamflow using climate elasticity in Poyang Lake Basin, China



Hydrological processes depend directly on climate conditions [e.g., precipitation, potential evapotranspiration (PE)] based on the water balance. This paper examines streamflow datasets at four hydrological stations and meteorological observations at 79 weather stations to reveal the streamflow changes and underlying drivers in four typical watersheds (Meigang, Saitang, Gaosha, and Xiashan) within Poyang Lake Basin from 1961 to 2000. Most of the less than 90th percentile of daily streamflow in each watershed increases significantly at different rates. As an important indicator of the seasonal changes in the streamflow, CT (the timing of the mass center of the streamflow) in each watershed shows a negligible change. The annual streamflow in each watershed increases at different rates, with a statistically significant trend (at the 5 % level) of 9.87 and 7.72 mm year−1, respectively, in Meigang and Gaosha watersheds. Given the existence of interactions between precipitation and PE, the original climate elasticity of streamflow can not reflect the relationship of streamflow with precipitation and PE effectively. We modify this method and find the modified climate elasticity to be more accurate and reasonable using the correlation analysis. The analyses from the modified climate elasticity in the four watersheds show that a 10 % increase (decrease) in precipitation will increase (decrease) the annual streamflow by 14.1–16.3 %, while a 10 % increase (decrease) in PE will decrease (increase) the annual streamflow by −10.2 to −2.1 %. In addition, the modified climate elasticity is applied to estimate the contribution of annual precipitation and PE to the increasing annual streamflow in each watershed over the past 40 years. Our result suggests that the percentage attribution of the increasing precipitation is more than 59 % and the decreasing in PE is less than 41 %, indicating that the increasing precipitation is the major driving factor for the annual streamflow increase for each watershed.


  • Air Pollution
  • Air Quality Control
  • Aquatic Pollution
  • Atmospheric Protection
  • Atmospheric Sciences
  • climate change
  • Waste Water Technology
  • Water Management
  • Water Pollution Control


Sun S L, Chen H S, Ju W M, et al. Effects of climate change on annual streamflow using climate elasticity in Poyang Lake Basin, China[J]. THEORETICAL AND APPLIED CLIMATOLOGY. 2013, 112(1-2): 169-183.

RIS下载 相关数据(共条)