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Abstract—Land-cover datasets are crucial for research on eco-
hydrological processes and earth system modeling. Many land-
cover datasets have been derived from remote-sensing data.
However, their spatial resolutions are usually low and their classifi-
cation accuracy is not high enough, which are not well suited to the
needs of land surface modeling. Consequently, a comprehensive
method for monthly land-cover classification in the Heihe river
basin (HRB) with high spatial resolution is developed. Moreover,
the major crops in the HRB are also distinguished. The proposed
method integrates multiple classifiers and multisource data. Three
types of data including MODIS, HJ-1/CCD, and Landsat/TM and
Google Earth images are used. Compared to single classifier, mul-
tiple classifiers including thresholding, support vector machine
(SVM), object-based method, and time-series analysis are inte-
grated to improve the accuracy of classification. All the data and
classifiers are organized using a decision tree. Monthly land-cover
maps of the HRB in 2013 with 30-m spatial resolution are made.
A comprehensive validation shows great improvement in the accu-
racy. First, a visual comparison of the land-cover maps using the
proposed method and standard SVM method shows the classifica-
tion differences and the advantages of the proposed method. The
confusion matrix is used to evaluate the classification accuracy,
showing an overall classification accuracy of over 90% in the HRB,
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which is quite higher than previous approaches. Furthermore,
a ground campaign was performed to evaluate the accuracy of
crop classification and an overall accuracy of 84.09% for the crop
classification was achieved.

Index Terms—Crop classification, HJ-1/CCD, land cover, mul-
tiple classifiers, multiple scales, multisource remotely sensed data,
phenology, river basin, time-series analysis.

I. INTRODUCTION

L AND cover, especially the distribution of vegetation or
terrestrial biogeography, is one of the key drivers that

determines the spatial patterns of biogeochemical cycling [1],
biodiversity [2], and consumption and production of natural
resources [3], [4]. Therefore, an improved understanding of
land cover is necessary to provide a baseline for assessing the
vulnerability of the carbon and water cycles and other ecosys-
tem processes related to ongoing global or regional change [5].
Moreover, the baseline is relevant to eco-hydrological process
and mechanism research and earth system modeling research,
such as dynamic global vegetation modeling and land sur-
face models, and the baseline is extended to such applications
as model initialization, optimization, and benchmarking [6].
Remote sensing has become widely used as a macro-observing
system for land-cover mapping, which can substitute for plant
functional type (PFT) as the baseline. Several moderate to fine
resolution global land-cover datasets, which are presented in
detail in Table I, based on different satellite sensors are avail-
able from different research groups [7]–[11]. These land-cover
datasets listed in Table I have large variability for three reasons
[12]: 1) the data quality and properties are different; 2) there
is no standard approach for classifying continuous vegetation
cover into discrete categories; and 3) they are not consistent
with the Earth System Model’s (ESM) requirements, because
the concept of PFT, whose traits represent a combination of
spectral relationships, and climatic, ecological, and theoret-
ical assumptions, used in ESMs cannot be mapped directly
using remote-sensing land-cover datasets [13]–[15]. In addi-
tion, the classification accuracies of land-cover datasets vary
and are hardly suited for land-process modeling and applica-
tions at a river basin scale. Some third-party researchers, such as
MaCallum [16] and Fritz [17], have found considerably lower
accuracies in different parts of the world when verifying vari-
ous global land-cover products. The accuracy and consistency
are even lower in China. Ran et al. [18] and [19] evaluated the
first four datasets over China using a large-scale land-cover map
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TABLE I
REMOTELY SENSED GLOBAL LAND-COVER DATASETS FROM PREVIOUS INVESTIGATIONS

USED FOR ECO-HYDROLOGICAL MODELING

TABLE II
CHARACTERISTICS OF EACH CLASSIFICATION METHOD

(1:100 000) of China [20] as the reference data, which showed
that the average accuracy of the four datasets ranged from 54%
to 59%. Bai et al. [21] looked into the consistencies and dis-
crepancies among the land-cover datasets in China and found
a reasonable agreement in terms of the dominating land-cover
types like grassland and cropland, and discrepancies of forest
classes, particularly shrubland.

A major research plan entitled “Integrated research on the
eco-hydrological process of the Heihe River Basin (HRB)”
(hereafter referred to as the Heihe Plan) was launched by
the National Natural Science Foundation of China (NSFC) in
2010. The major scientific objectives [22] of the Heihe Plan
are to understand the processes and mechanisms of an eco-
hydrological system in an inland river basin and its effects on
the economy and climate change and provide fundamental the-
ory and technical support for water security, ecological security,
and sustainable development in inland river basins. Eventually,
the implementation of the Heihe Plan will establish a research
platform that integrates the eco-hydrological observation, data
management, and model simulation of both physical and socio-
economic processes to foster 21st century watershed science in
China [23]. The HRB in the arid region of northwest China has
been selected as an experimental watershed to carry out this
research project. This area was selected because the HRB is a
typical inland river basin. In addition, the HRB has served as
an experimental site for integrated watershed studies and land
surface or hydrological experiments for a very long time [24].
Comprehensive experiments such as HEIFE [25] and WATER
[26] took place in the HRB. In addition, a prototype watershed
observation system has been developed [22].

The highest uncertainty in land-cover classification from
optical remotely sensed imagery occurs most frequently
between the cropland and grassland categories and in dry-
land systems among the shrub, grassland, and forest categories
because of differences in the minimum threshold required for
forest cover [5]. For the HRB, most are distributed over an arid
region, so the vegetation classification in the HRB based on cur-
rent land-cover datasets would cause very large uncertainty and
may cause great error or even the failure of eco-hydrological
and land-process modeling. However, the uncertainty of land-
process modeling could be reduced by using land-cover
datasets from fine spatial resolution remotely sensed data to
retrieve a higher diversity of vegetation classes [27], even with
functional crop types [28]. In addition, DGVM, an ecosystem
model, simulates global biogeography and biogeochemistry via
coupled water–carbon cycling and vegetation dynamics [29].
The vegetation dynamics can be captured by the monthly or
even finer temporal resolution land-cover map with vegetation
variation, which helps improve the accuracy of DGVM [5].
Therefore, a monthly land-cover map with higher diversity of
vegetation classes, even functional crop types, well benefits the
eco-hydrological and land-process modeling in the HRB.

All global land-cover products listed in Table I were gen-
erated on a per-pixel basis [11]. The input data were or
included time-series low-spatial-resolution spectral imagery or
NDVI [21]. The major methods for these land-cover classi-
fication included decision tree [30], support vector machine
(SVM) [31], and time-series analysis [32], [33]. Recently, satel-
lites, such as the FORMOSAT-2 and Chinese Huanjing-1 (the
detailed information will be provided in Section II-B), already
have the capability to provide coverage of the Earth (with
limited coverage) every few days with high spatial resolution
(HSR), so satellite image time series are becoming increasingly
available and will continue to do so in the future. Zhong et al.
[34] and Petitjean et al. [35] used satellite imagery time series
produced qualified land-cover map. A detailed review on satel-
lite image time-series analysis methods can be referred to [35].

In recent years, the improvements in sensor technologies
have increased the accessibility to HSR remotely sensed
imagery, which boosts new classification methods like the
object-based image analysis (OBIA) methods that build on seg-
mentation, edge detection, feature extraction, and classification
have been developing rapidly [36]. Blaschke [37] elaborates on
OBIA for remote sensing. Myint et al. [38] demonstrate that
object-based classifier is significantly better than the classical
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Fig. 1. Location of the HRB (left) and its false color composite from bands 4, 3, and 2 of HJ-1/CCD (right). The approximate boundaries of the upper, middle,
and lower streams are also plotted out.

TABLE III
COMPARISON OF DIFFERENT SPATIO-TEMPORAL RESOLUTION DATA IN LAND-COVER MAPPING

per-pixel classifiers. Recently, OBIA taking advantage of the
use of multiple scales of data has been developed [39], [40].
OBIA has been further evolved from two aspects: 1) the method
for multiscale classification [36]; and 2) taking full advantages
of multiple contexts, e.g., Guo et al. [41] developed a cascaded
classification of high-resolution remote-sensing images using
multiple contexts, which was implemented in a hierarchical
way, i.e., the previous stage provided a better initial classifi-
cation for the following stages, with the result gradually being
refined by integrating different contexts.

Overall, all these methods have their own advantages and
disadvantages, so a specific classifier is usually most suitable
to certain types of land cover or some types of remote-
sensing data. The characteristics of each method are listed
in Table II.

In order to improve the accuracy of eco-hydrological and
land-process modeling in the HRB, a comprehensive method
for mapping monthly land cover with fine spatial resolution
and more categories of crop/vegetation is developed by using
multiple classifiers and multisource remotely sensed data with
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Fig. 2. NDVI time series that form the HJ-1/CCD data of the typical land-cover classes in the HRB. The typical land-cover classes include forests, grasslands,
crops, waterbodies, urban and built-up areas, and so on. Most of the land-cover classes can be visually distinguished from the NDVI time series.

TABLE IV
DATA USED IN THE HRB LAND-COVER CLASSIFICATION

a,b The land cover in the HRB is stable in winter, so the HJ-1/CCD data for November and December are not used in this study.

different spatio-temporal resolutions and spectral bands. The
proposed method was called land-cover mapping by using mul-
ticlassifiers and multisource remotely sensed imagery, which
was abbreviated as LCMM. The classification result was eval-
uated visually and quantitatively using data from a ground
campaign, HSR images from Google Earth, and time-series
HJ-1/CCD images.

II. STUDY AREA AND DATA

A. Study Area

The study area is the HRB, which is located between
97.1�E�102.0�E and 37.7�N�42.7�N, covering an area of
approximately 143 000 km2 (Fig. 1). This basin is character-
ized by cold and arid landscapes. The upper stream is a cold
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Fig. 3. HJ-1/CCD image mosaics (bands 3, 2, 1) of the HRB in January (left) and July (right).

and mountainous area consisting of the upstream regions of the
Heihe River, whose elevation ranges from 2640 to 5000 m.
The typical landscapes in this area include alpine grassland,
swamp, alpine meadow, valley bush, Picea crassifolia, and
Qilian juniper. The middle stream is an artificial oasis-riparian
ecosystem-wetland-desert compound in the middle region of
the HRB, whose major crops include maize, spring wheat, and
vegetables. The crops are usually planted once a year because of
high latitude and dry weather. The lower stream is a compound
of natural oasis and desert. The landscapes are composed of
sandy and gravel deserts, a natural oasis mainly with Populus
euphratica and Tamarix, and terminal lakes. This area is an
extremely arid region. Detailed information regarding the HRB
can be found in [22].

B. Exploiting Multisource Remotely Sensed Data

Remote-sensing data with different spatio-temporal res-
olutions and spectral bands usually designate different land
surface characteristics and have advantages and disadvantages
during classification. Subsequently, four sets of remotely
sensed data, including the charge-coupled device (CCD) data
from the Huan Jing 1 (HJ-1) satellite (hereafter, the CCD
camera onboard the HJ-1 satellite is written as HJ-1/CCD;
detailed information regarding HJ-1/CCD can be found in
[42]), Thematic Mapper (TM) data from Landsat 5, and
Moderate Resolution Imaging Spectroradiometer (MODIS)
onboard both the Terra and Aqua satellites are used together to
make a land-cover map of the HRB in this study. Google Earth
imagery with very HSR (VHSR) is also used for sampling and

validation purposes. Table III shows the spatial, temporal and
spectral characteristics, advantages and usages of these data in
the proposed method.

HJ-1 was launched on September 6, 2008 by the
China Centre for Resources Satellite Data and Application
(CRESDA). The HJ-1 satellite constellation is composed of
three satellites, called HJ-1A, HJ-1B, and HJ-1C. HJ-1A has
two CCD cameras and one hyperspectral instrument onboard;
HJ-1B has two CCD cameras and one infrared camera onboard;
HJ-1C is a synthetic aperture radar (SAR) satellite that was
launched on November 19, 2012. The nominal spatial resolu-
tion of the CCD cameras is 30 m. HJ-1/CDD has three visible
bands (430�520 nm, 520�600 nm, and 630�690 nm) and one
near-infrared band (760�900 nm). Both HJ-1A and B have two
CCD cameras onboard; therefore, four CCD cameras are work-
ing simultaneously in this satellite constellation, which makes
a swath of approximately 700-km wide for each satellite and a
revisit period of 48 h. The four CCDs are called HJ-1A/CCD1,
HJ-1A/CCD2, HJ-1B/CCD1, and HJ-1B/CCD2.

The two shortwave infrared (SWIR) bands of TM onboard
Landsat 5 enable the calculation of normalized difference built-
up index (NDBI), which can assist the classification of urban
and built-up regions.

MODIS data from both Terra and Aqua have a tempo-
ral resolution of twice a day (daylight only), so normalized
difference vegetation index (NDVI) series with an interval
of 8 days can be constructed, which fits the phenology of
vegetation with large areas very well. Therefore, the NDVI
series can be used to differentiate crops with very similar
phenology.
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TABLE V
CLASSIFICATION SYSTEM IN THE HRB AND THE DISTRIBUTION OF LAND-COVER CLASSES ALONG THE UPPER, MIDDLE,

AND LOWER STREAMS OF THE HRB

a X means the corresponding land cover does not exist along the specified stream.
b � means the corresponding land cover exists along the specified stream.

Google Earth imagery has VHSR, so it can be used to choose
samples for certain classes during the classification and eval-
uate the classification results in a confirming way. Because
the retrieving dates of the Google Earth imagery are hardly
within the time period of land-cover mapping and the data
have spatial errors, the Google Earth imagery is only used
to confirm samples and is never used as input data for the
classification.

Because HJ-1/CCD data have high spatio-temporal resolu-
tion, they have both the advantages of fine spatial resolution
data and high temporal data [26]. Multitemporal Landsat/TM
data have been used for land-use mapping, but it usually
takes several years to collect the multitemporal data, espe-
cially for large areas, such as the HRB, and the land use/cover
changes during the data collection period. However, the HJ-
1/CCD data can easily compose a multitemporal dataset, even
in a monthly interval or even shorter period. The monthly
mosaics of the whole HRB in 2013 (total of 10 mosaics for
January to October) from HJ-1/CCD data are constructed and
used as the principal data for the HRB land-cover mapping in
this study. The procedure for constructing time series of the

HRB mosaics from HJ-1/CCD is introduced as follows and the
details of the procedure can be found in [26]. Fig. 2 shows the
NDVI time series that form the HJ-1/CCD data of the typical
land-cover classes in the HRB. The typical land-cover classes
include forests, grasslands, crops, waterbodies, urban and built-
up areas, and so on. Most of the land-cover classes can be easily
distinguished from the NDVI time series. All the data used in
this study are listed in Table IV.

To take advantage of the HJ-1/CCD data in land-cover map-
ping, mosaics of the HRB were made using multiple scenes
of the HJ-1/CCD images listed in Table III, and 10 mosaics
corresponding to 10 months (the land cover in the HRB is
stable in winter, so the HJ-1/CCD data for November and
December were not used in this study) in 2013 were made,
which construct the time series of the HRB mosaics in 2013.
The monthly mosaics of the HRB can depict the dynamic vari-
ation of the land-cover classes. After the data were prepared,
data preprocessing, including geometric correction, radiomet-
ric calibration and atmospheric correction, needs to be done to
make an optimal time series of mosaics. The processes are as
follows.
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TABLE VII
PHENOLOGY OF THE MAJOR CROPS IN THE HRB

Fig. 6. Monthly NDVI profiles of crops in the HRB. Almost all the profiles of the crops have obvious differences at certain times, except rape and highland barley,
whose NDVI profiles are very similar.

Fig. 7. MODIS NDVI time series of rape and highland barley (left) shows that the major difference between rape and highland barley occurs at the end of July
and the beginning of August, when rape blossoms and its NDVI becomes lower. The NDVI from HJ-1/CCD on August 4 (right) proves the difference (rape’s
NDVI is lower than that of highland barley) does distinguish the two crops very well.

4) Capability of remotely sensed data: the multiple spatio-
temporal remotely sensed data and even the dynamic
variation information of land cover make it possible to
make a fine-resolution land-cover dataset.

B. Decision Tree Construction

Because multiple classifiers and multisource remotely sensed
data are used in this study, decision trees are used as the prin-
cipal classifier to coordinate the other classifiers and all the
remotely sensed data in a hierarchical way. When making the

decision trees, land-cover classes are extracted at various stages
and related according to suitable criteria in a hierarchical struc-
ture. The criteria at lower hierarchies are easily determined
and become more and more difficult to determine with increas-
ing hierarchy. Because the land-cover classes along the upper,
middle, and lower streams are slightly different, the decision
trees for the three streams need to be constructed with a slight
difference at some hierarchies.

A decision tree is composed of a root node, a set of internal
nodes, and a set of terminal nodes (TNs). A root node usually
contains all the data used in the classification, but the root node
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Fig. 8. Typical distribution mode of urban and built-up areas and the Gobi Desert in the HRB and the urban extraction results using multiple classifiers. The true
color composite image of Zhangye (the upper left image), the urban and built-up area extraction result using the object-based classifier (the upper right image),
the result using NDVI time-series analysis (the lower left image), and the result using an SVM classifier on a single image (the lower right image).

in this study contains only some of the data used. Internal nodes
are also called splits, which can be partitioned into two nodes
through criteria. TNs are also called leaves, which are the final
land-cover classes listed in Table IV. The land cover is classi-
fied by moving down the tree and sequentially subdividing it
according to the decision framework (a set of criteria) defined
by the tree until a leaf is reached.

Fig. 4 shows the decision tree of the upper stream in the HRB
as an example. Based on a set of criteria {C0, C1, C2, C11,
C21, C111, C211, C212, C1111, C2121}, the upper stream of
the HRB is subdivided into internal nodes and TNs hierarchi-
cally and consequently becomes a land-cover map. The root
node denotes the whole area to be classified. For example, the
root node in Fig. 3 refers to the upper stream of the HRB.
Internal nodes are actually masks for a specified area within
the root node and define the spatial extent or boundary for cor-
responding criteria. For example, internal node 1 (IN1) defines
the nonvegetated area along the upper stream of the HRB as
the spatial extent of criteria 1 (C1). TNs are the final land-cover
classes listed in Table V. Criteria are the key steps for decision
trees and define the input data, the rules for deducing the clas-
sifiers, and the outputs. For example, C0 uses the NDVI during
the growing season (May, June, July, August, and September)
from HJ-1/CCD as input data; the rule is that if any pixel’s
NDVI during either month is higher than 0.2, the pixel is clas-
sified as vegetated; otherwise, it is classified as nonvegetated.
The input data, deduction rules, and outputs are described in
detail in Table VI.

From Table VI, it is obvious that multiple data (including
HJ-1/CCD, Landsat/TM, Google Earth images, and DEM) and

their derivatives (NDVI, NDWI, and NDBI) are fully used at
various stages of the classification tree and are very different.
Moreover, even if the same data or their derivatives are used at
different stages, the temporal ranges of the data and their deriva-
tives are usually different for different classification purposes.
For example, although C0 and C211 both use NDVI from HJ-
1/CCD, C0 uses NDVI in the growing season and C211 uses
monthly NDVI for the whole year.

In addition to taking advantage of multiple data, the usages
and advantages of multiple classifiers, including threshold-
ing, SVM, object-based method, and time-series analysis, are
simply described in Table VI. Each classifier has its own advan-
tages and can be used to distinguish one or more classes in
the classification system. The usages and advantages for every
classifier in the decision tree are detailed as follows.

1) Thresholding: Thresholding is the most used classifier
in the decision tree, and its usage is simple and straightforward.
Thresholding is efficient and highly accurate. In this study,
both multiple data and multitemporal (time series) data are
used in the thresholding procedures; the classification results
even capture the dynamic variation of the land-cover classes,
which greatly improves the classification accuracy compared
to only using limited data from a single temporal phase. The
criteria including C0, C1, C2, C11, C21, C1111, and C2121
use the thresholding classifier. The major advantages for using
multiple and multitemporal data for thresholding are listed as
follows.

1) C0: In this criterion, the maximum value of NDVI for
the whole growing season is used to determine whether
a pixel is vegetated, which means that as long as a pixel
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Fig. 9. Monthly land-cover maps of the HRB.

grows vegetation, it is classified as a vegetated class. This
can avoid classifying harvested croplands as barrenlands.

2) C1: This criterion captures the monthly fluctuation of
waterbodies and retrieves the monthly boundaries of
waterbodies. It is helpful for the classification of barren-
lands and urban and built-up areas at later stages.

3) C2: In this area, evergreen coniferous forests grow in
mountainous areas and can be easily recognized using
NDVI in winter. However, because the Sun’s elevation
in winter is very low, some of the coniferous forests are
shaded by mountains; therefore, NDVIs from multiple

months help to lower or even eliminate the effects of
shadow.

4) C1111: The difference between glaciers and snow and
ice is that glaciers exist the entire year but snow and ice
does not. Thus, snow and ice and glaciers can be easily
separated using this rule.

2) SVM: The SVM is used to separate bare rocks (barren-
lands) from snow and ice. It is simple and straightforward and
can be implemented using any popular software toolbox. The
first and important step for SVM classification is sampling. In
order to make a better sample set, the VHSR imagery from
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Fig. 10. Visual comparison of the classification results between the LCMM and SVM methods. The images on lines 1–5 are the false color composites (bands
4, 3, and 2) of HJ-1/CCD in March, May, July, September, and October, respectively; the HSR images from the Google Earth images on line 6 corresponding to
the blue boxes marked on the HJ-1/CCD images show the details of different land-cover classes; the images on lines 7 and 8 are the land-cover maps from the
SVM and LCMM methods, respectively. The images in different columns show the classification differences for different land-cover classes, such as glaciers,
grasslands, farmlands, evergreen coniferous forests, and urban and built-up areas, between the LCMM and SVM methods.
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TABLE VIII
DETAILED INFORMATION OF THE SAMPLING SITES FOR CROP CLASSIFICATION VALIDATION

TABLE IX
SAMPLING DETAILS ALONG THE UPPER, MIDDLE, AND LOWER STREAMS OF THE HRB
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Fig. 5 shows an example of monthly HJ-1/CCD images (false
color composites using bands 4, 3, and 2) capturing the growth
differences among different crop types near Zhangye. In Fig. 5,
red denotes the growth states of crops; the redder the mark-
ings, the better the crops have grown. Two major crop types
can be captured from Fig. 5. The upper portion and lower por-
tion of Fig. 5 are vegetables and maize, respectively, and they
have very different growth curves, which are defined by their
phenology.

The monthly NDVI in a whole year from HJ-1/CCD approx-
imately fits the phenology of the crops; therefore, the monthly
NDVI from HJ-1/CCD is used to classify the major crops,
including spring wheat, maize, rape, highland barley, cot-
ton, and alfalfa, in the HRB, whose phenology are listed in
Table VII. Fig. 6 shows the monthly NDVI profiles of these
crops. Based on phonological characteristics analyzed from the
NDVI time series, the criteria for crop classification are given
as follows.

1) Alfalfa is harvested several times a year, so its NDVI tem-
poral profile shows a multimodal form. This characteristic
is unique and can be expressed as follows:

�t =

�
1, when |NDV It �NDV It�1| > 0.3
0, when |NDV It �NDV It�1| � 0.3

(4)

n =
� N

t =1
�t (5)

where t means the number of month and t � 1 means the
former month. Therefore, when n is larger than 4, alfalfa
is determined, which means that there are more than two
peaks on the NDVI temporal profile.

2) Spring wheat is the earliest harvested crop in the HRB.
Equation (6) retrieves the month of harvesting for crops.
When the month of harvesting is the minimum (the ear-
liest comparing to the other crops’) one, spring wheat
is determined. Although the first harvesting of alfalfa
is maybe earlier than spring wheat, it does not influ-
ence the result because alfalfa has been determined in
advance

H = t, when NDV It �NDV It�1 < �0.3. (6)

3) Maize and cotton are the last harvested crops. Based on
(6), when the month of harvesting is the maximum (the
latest comparing to the other crops’), maize and cotton are
determined. Cotton’s NDVI decreases at the boll splitting
stage and increases after cotton picking, which means that
the NDVI at 1 month later of harvesting is higher than
the NDVI at the month of harvesting, which is expressed
as (7); consequently, cotton can be determined using this
criterion and maize is what left

NDV IH �NDV IH +1 < �0.1. (7)

Consequently, based on the NDVI time-series analysis, most
of the crops in the HRB are differentiated. However, rape
and highland barley have similar NDVI profiles. Subsequently,
higher frequent NDVI profiles for the two crops are needed.
Because the MODIS NDVI product (MOD 13Q1 collection 6)

TABLE X
SAMPLING DETAILS OF THE CROPS ALONG THE MIDDLE STREAM

has a temporal resolution of 16 days, it is used to construct
the NDVI temporal profiles of rape and highland barley, which
are shown in Fig. 7 (left). Since the rape and highland barley
are planted in very large areas, pure pixels of the two crops
can be found easily within the 250-m MODIS data. From the
MODIS NDVI time series with higher temporal frequency, the
difference between the two crops is prominent, which happens
at about the end of July and beginning of August when rape
blossoms. At that time, the NDVI of rape is lower than that
of highland barley. Based on the information, the HJ-1/CCD
image on August 4 is chosen, whose NDVI is shown in Fig. 7
(right). The rape in the box has lower NDVI than the highland
barley in the ellipse. Therefore, the major crops in the HRB
can be distinguished using monthly NDVI time series from
HJ-1/CCD with the assistance of MOD13Q1 time series.

5) Object-Based Classifier for Urban Extraction: Urban
and built-up areas, such as villages and towns, are widely spread
throughout an artificial oasis along the middle stream and a nat-
ural oasis along the lower stream. The urban and built-up areas
have extremely similar spectral and temporal characterization
with the Gobi Desert, which is the most widely distributed land
cover in the middle and lower streams. The Gobi Desert is con-
nected, so it covers most of the middle and lower streams;
however, the urban and built-up areas are scattered within
the oasis and have much smaller sizes compared to the Gobi
Deserts. Therefore, the object-based classifier is used in this
study, and the feature used in the classifier is the sizes of the
objects. Image segmentation was implemented by using eCog-
nition7.0 software (Definiens Imaging). The implementation is
the same as Section III-B3 and the parameters for scale, color,
and shape are set as 70, 0.2, and 0.5, respectively. Fig. 8 (upper
left) shows the typical distribution mode of urban and built-up
areas and the Gobi Deserts in the HRB. The classification result
using an object-based classifier is shown in Fig. 8 (upper right),
and the result using NDVI time-series analysis (lower left) and
the result using an SVM classifier on a single image (lower
right) are also shown in Fig. 8. It is obvious that the result from
the object-based classifier is the best as its accuracy is higher
than 90%. The other two methods classify a large portion of the
Gobi Desert as urban and built-up areas.
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Fig. 12. Example of the crop-type classification validation. The image on the left is the classification results and the image on the right is the corresponding
crop-type plot from the ground campaign.

TABLE XI
CONFUSION MATRIX OF THE CLASSIFICATION FOR THE UPPER, MIDDLE, AND LOWER STREAMS

IV. CLASSIFICATION RESULTS AND VALIDATION

A. Classification Results

Based on the decision tree built in part 3, the monthly land-
cover maps of the HRB are made and are shown in Fig. 9.

B. Visual Comparison

To evaluate the classification results from LCMM, a visual
comparison of the classification results between the LCMM
and SVM methods is carried out. The comparisons of different
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TABLE XII
CONFUSION MATRIX OF THE CROP CLASSIFICATION ALONG THE MIDDLE STREAM (IN PERCENTAGE)

TABLE XIII
MAJOR EVALUATION INDICATORS FOR CROP CLASSIFICATION ACCURACY

Fig. 13. Dynamic variation in the waterbodies and wetlands.

land-cover classes are plotted in Fig. 10. In Fig. 10, the images
on lines 1�5 are the false color composites (bands 4, 3, and
2) of HJ-1/CCD in March, May, July, September, and October,
respectively; the HSR images from the Google Earth images
on line 6 corresponding to the blue boxes marked on the HJ-
1/CCD images show the details of different land-cover classes;

the images on lines 7 and 8 are land-cover maps from the
SVM and LCMM methods, respectively. The images in dif-
ferent column show the classification differences for different
land-cover classes, such as glaciers, grasslands, farmlands,
evergreen coniferous forests, and urban and built-up areas,
between the LCMM and SVM methods, and these differences
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are very obvious. The major differences are detailed as
follows.

1) Glaciers and snow can be differentiated using LCMM but
not SVM (see images in column 1).

2) Grasslands and deciduous forests can be differentiated
using LCMM but not SVM (see images in column 2).

3) Major crops can be differentiated using LCMM but not
SVM (see images in columns 3 and 5).

4) Evergreen coniferous forests can be better recognized
using LCMM (see images in column 4).

5) Urban and built-up areas can be better differentiated from
the Gobi Desert and bare soils using LCMM than SVM
(see images in columns 3 and 5).

6) The classification accuracy of LCMM is much better than
that of SVM, which can be evaluated using the HSR
images from Google Earth on line 6.

C. Ground Campaign for Crop Investigation

To validate the results of the crop classification, a ground
campaign along the middle stream of the HRB was made
in August 2013. During the ground campaign, eight people
were divided into six groups, and a total of 24 sampling
areas scattered across four typical counties (Zhangye, Linze,
Shandan, and Minle, abbreviated ZY, LZ, SD, and ML, respec-
tively) along the middle stream were investigated, which are
marked on Google Earth images (Fig. 11) and whose detailed
information are listed in Table VIII. The crop types, photos
and geographical coordinates for each investigated area were
recorded. The crop types were plotted in the form of field
parcels on Google Earth images with VHSR, and the rightmost
image in Fig. 11 shows an example of the crop-type plot.

D. Validation

The land-cover classes are very different along differ-
ent streams, e.g., the Gobi deserts cover almost half of the
whole HRB; therefore, the validation is divided into three
parts: the upper, middle, and lower streams. In addition,
because the “true” values for crop classification are retrieved
differently, the crop classification accuracy along the middle
stream is evaluated in a separate procedure. The procedure for
validating the classification results is as follows.

1) Randomly sample from the classification map by land-
cover types except crops, which are validated using the
sample data from the ground campaign introduced in
Section IV-B. The sample number for each class is deter-
mined by the area ratio of the class to the corresponding
stream. The sampling details are shown in Table IX. The
sampling details of crops along the middle stream are
shown in Table X.

2) Locate the samples precisely on the remotely sensed
images, including time series of HJ-1/CCD and VHSR
images from Google Earth.

3) Manually interpret the land-cover types of the samples by
carefully inspecting the remotely sensed images; VHSR
images from Google Earth confirm most of the land-
cover types, such as urban and built-up areas, barrenlands,

deciduous broadleaf forests, wetlands, and grasslands.
Time series of HJ-1/CCD images are used to differentiate
the easily confused types, such as evergreen conifer-
ous forests, snow and ice, glaciers, and waterbodies, by
inspecting the dynamic variations in the different land-
cover types. The crop types are inspected using the data
from the ground campaign; Fig. 12 shows an example.

4) Make separate confusion matrices for the upper, middle
and lower streams, which are shown in Table XI. The
accuracies for the three streams are 93.36%, 93.06%, and
93.65%, respectively, and the Kappa coefficients are all
0.92. Based on the data from the ground campaign, the
overall accuracy and Kappa coefficient for the crop clas-
sification along the middle stream are 84.09% and 0.81,
respectively. The confusion matrix and the major eval-
uation indicators for the crop classification are listed in
Tables XII and XIII.

5) The overall accuracy is evaluated based on the confusion
matrix in Table XI by integrating the validation results
of the upper, middle, and lower streams. The overall
accuracy for the whole HRB without considering crop
classification along the middle stream is higher than 93%,
and its Kappa coefficient is higher than 0.92; when con-
sidering crop classification along the middle stream, the
overall accuracy and Kappa coefficient are reduced to
slightly higher than 90% and slightly lower than 0.9,
respectively.

In addition, the land-cover maps from LCMM are monthly,
which shows the dynamic variations in the land-cover classes.
Fig. 13 shows an example of the dynamic variation in the water-
bodies and wetlands. The dynamic variations in the different
land-cover classes are very useful for land-process modeling.

V. CONCLUSION AND DISCUSSION

In this paper, a comprehensive land-cover mapping method
using multiple classifiers and multisource remotely sensed
imagery, named as LCMM, was developed by using multi-
ple classifiers and multisource remotely sensed data, which
have different spatio-temporal resolutions and spectral bands.
LCMM can create a monthly land-cover map with 30-m
resolution and recognize major crops in the HRB. LCMM
manipulates multisource remotely sensed data and takes full
advantage of the spatial resolution (VHSR images from Google
Earth), temporal resolution (monthly HJ-1/CCD images), and
spectrum (Landsat/TM) of different data. To manipulate dif-
ferent data, multiple classifiers including thresholding, decision
trees, SVM, time-series analysis, and object-based method are
employed. LCMM succeeds in integrating all the classifiers and
data and makes the method simple, accurate, and efficient.

The land-cover map of the HRB made using LCMM has a
very high accuracy of over 90%, which is suited for most of the
applications and research for land-process modeling under the
Heihe Plan. Compared to the classification map from a single
data source and using a single classifier, such as the SVM, the
new classification map has the following advantages, making it
much more usable for research on land-process modeling, eco-
hydrological modeling, and crop-yield estimation.
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1) It is not the first classification map with 30-m spatial
resolution covering the whole HRB, but its classification
accuracy is over 90%, and the map may be the only one
with such high classification accuracy.

2) It is the first classification map with more than seven
major crops in the HRB, and the accuracy of crop clas-
sification reaches 84%, which helps improve research on
eco-hydrological models and crop-yield estimation.

3) Because it is composed of a monthly land-cover map of
the HRB, it is dynamic and can reflect monthly land-
cover change. The monthly land-cover map will further
improve the accuracy of model simulations when inputted
into eco-hydrological models.

Although LCMM is developed for the HRB, the methodol-
ogy can be extended to other regions with some modifications,
such as China, as long as there are time-series HSR images.
In addition, because the criteria of LCMM are flexible, LCMM
has the potential to be automated with some more efforts, which
will save a lot of manpower. However, because LCMM uses a
large amount of multisource remote-sensing data and monthly
30-m resolution HJ-1/CCD data, preprocessing of these data,
including geo-registration and atmospheric correction, is very
important, as it directly influences the accuracy of the classifica-
tion. Furthermore, the geo-registration of different data usually
involves considerable manual work to obtain better registration
accuracy; therefore, automated preprocessing automation is one
of the major difficulties in making LCMM automatic. How to
transfer and extend the criteria to other regions is another key
issue in the future.
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